
J-DSP-CONTROL: A CONTROL SYSTEMS SIMULATION ENVIRONMENT +

T. Thrasyvoulou, K. Tsakalis and A. Spanias

MIDL
Department of Electrical Engineering

Arizona State University, Tempe, AZ 85287-7206
thrassos@asu.edu, tsakalis@asu.edu, spanias@asu.edu

ABSTRACT

J-DSP-C is a java-based object-oriented
programming environment that was developed at Arizona
State University for use in control systems education.
This environment enables the simulation of dynamical
systems on-line from any computer system equipped with
an Internet browser. The J-DSP-C features are primarily
aimed to provide an on-line laboratory experience to
distance learning students. Combined with a report
submission and scoring facility, J-DSP-C integrates
interactive examples into web content for education and
demonstration purposes.

+ Supported in part by NSF CCLI grant DUE 0089075. J-DSP concept by A. Spanias. For more information on J-DSP and its dissemination please contact
spanias@asu.edu.
.

KEYWORDS

Simulation, Education, Control Systems.

1. INTRODUCTION

This paper presents a prototype laboratory
software tool, called Java-Digital Signal Processing -
Control (J-DSP-C). J-DSP-C can be used to simulate
control systems on-line, taking advantage of recent
developments in Internet technology. The main
motivation behind its development stems from the recent
increase of the percentage of distance-learning students at
Arizona State University (ASU) and other major
metropolitan universities. Distance learning is a trend in
today’s education, and J-DSP-C fills a gap by providing a
simple yet powerful tool for on-line control systems
simulations. The software is freely distributed and is
designed to enhance distance-learning and continuing
education with an on-line laboratory experience. Its
precursor is J-DSP that was developed in the ASU
Multidisciplinary Initiative on Distance Learning (MIDL)
laboratory. J-DSP was successfully tested in ASU’s
undergraduate digital signal processing class. Based on
this experience, further enhancements of this tool are
currently under development in MIDL, for use in controls,
communications, and image processing education. The

control systems extension J-DSP-C will soon be tested for
use in undergraduate control classes.

Similar to its precursor, J-DSP-C is an object-
oriented simulation environment that enables students to
establish and execute control systems simulations from
any computer equipped with an Internet browser. All
functions in J-DSP-C appear as graphical blocks that are
accessed through pull-down menus and are grouped
according to their functionality. The J-DSP-C editor
allows the user to graphically setup and simulate systems
with arbitrary interconnection topology. An example of
the J-DSP-C graphical user interface (GUI) is illustrated
in Figure 1. The following sections provide an overview
of the J-DSP prototype, the J-DSP-C enhancements and
limitations, its current functionality, and examples of use.

Figure 1: J-DSP-C user interface

Blocks
Buttons to
select blocks

Work space

Details on J-DSP and J-DSP-C are given in [1]

and in the on-line documentation at http://jdsp.asu.edu
[3]. Funding for the development of J-DSP and J-DSP-C
was provided by the NSF CCLI program and includes

mailto:spanias@asu.edu
Thrassos Thrasyvoulo
22nd IASTED International Conference on Modeling, Identification, and Control, February 10-13, 2003, Innsbruck, Austria.

software development and dissemination along with a
series of on-line laboratory exercises.

 The modifications of the basic editor can be
divided into two categories. One is the enhancement of
the GUI interface, together with the associated changes in
the object classes. The other is the modification of the
execution procedure to enable the simulation of feedback
loops.

2. J-DSP OVERVIEW

The J-DSP editor is the basis on which J-DSP-C
was developed. J-DSP was originally developed as a
platform to simulate the typical systems and operations
encountered in digital signal processing. Its underlying
philosophy was dictated by its suitability for operation
over the Internet. Using object-oriented programming
principles, J-DSP proved to be a successful tool to address
the typical computational and visualization needs of DSP
courses. The existing functionality includes basic filter
design, fast Fourier transforms (FFT), upsampling,
downsampling, signal generation and plotting. More
advanced functions include autocorrelation, various types
of periodograms and correlograms and AR time-series.
(See [1,3] for details.)

In the original J-DSP, blocks were rectangular
and had two ports, the left one designated as an input port
and the right one as output. Two additional ports
top/bottom were available for exchange of parameters.
This configuration was adequate to represent the usual
DSP operations but too inflexible for feedback systems.
In order to achieve consistency with the standard notation
and appearance of feedback control systems, the J-DSP-C
GUI and the editor can now handle blocks with multiple
input/output ports that are not limited to rectangular
shapes. For example, a summation node can now appear
as a circle with several input ports, while a gain block is
shown as a triangle. The new environment also allows
blocks to be rotated and flipped and the connections to be
edited or modified. This capability is quite essential in
maintaining a “clean” visual appearance of more
complicated system interconnections. The differences
between the GUI capabilities of the J-DSP and J-DSP-C
editors are illustrated in Figures 2 and 3.

To address the needs of other DSP-related
problems, the J-DSP editor is currently being expanded to
offer new specialized functionality. Several new functions
are being developed within this framework to support
experiments on speech analysis-synthesis, time frequency
representations, image processing, and communications
systems [2].

 On the other hand, enabling the support of
experiments in feedback systems required more
substantial modifications. A key characteristic of J-DSP
was its sequential processing of information. Once a
block is introduced in the editor, its output is immediately
computed based on the input it receives. Although this is
an attractive feature, especially for educational examples,
it cannot accommodate general interconnection
topologies, such as feedback systems. Addressing this
issue, J-DSP-C represents a significant enhancement of
the basic J-DSP engine, while it preserves the same
fundamental object-oriented structure and most of the
already developed infrastructure.

Figure 2: J-DSP user interface
 3. THE J-DSP-C ENVIRONMENT

Figure 3: J-DSP-C user interface

The handling of feedback and, in general,
arbitrary interconnections of blocks required some major
changes in the J-DSP editor infrastructure. Our objective
during this development was to preserve the original
structure as much as possible together with its underlying
concept. That is, the J-DSP-C development adheres to the
same simplicity, compactness, and object-oriented
philosophy of its precursor. This resulted in some
compromises in terms of generality and computational
efficiency. However, in its primary mission as an
educational tool, the J-DSP-C limitations are not too
severe and can usually be circumvented by a careful
planning of the simulation experiments.

A more extensive modification of the original J-
DSP engine was necessary to enable the simulation of
feedback systems. The class of control blocks was
expanded to include state-space descriptions of dynamical
systems. All blocks now have a state attribute (trivial for
memoryless blocks) to enable the recursive computation
of the system response. For simplicity, discrete-time
approximations are used internally to compute the
response of continuous-time systems. This conversion is
transparent to the user, but care should be exercised in the
selection of the sampling time so that the discretization is
reasonably accurate. (A warning is issued when the
sampling time seems too large.) In this setting, the
computation of the response of the system interconnection
is computed recursively in time and iteratively with
respect to the various blocks.

The recursive portion of the solution is made
possible by using state-space descriptions. At each time
instant, the solution can be advanced by one time step and
only the state vector needs to be stored in memory. The
iterative portion of the solution is required to ensure that
the correct inputs are computed for all blocks. That is, at
each time instant, the input/output computations are
iterated until they converge, before updating the states.
This simplified approach is compatible with the object-
oriented definition of the various blocks. However, a
subtle point and a key limitation is that convergence is not
necessarily guaranteed for any system interconnection. It
can be shown that:
• When a feedback loop has no algebraic part (at least

one of the systems has no direct throughput) then the
iteration convergence in finite steps, proportional to
the number of blocks in the loop.

• When a feedback loop has an algebraic part then the
iteration converges exponentially as (1-ρ)k , where ρ
is the loop direct throughput, provided that ρ < 1.
Otherwise, the iteration diverges.

In practice, this limitation is not very restrictive
but it should be obeyed when defining the feedback
interconnections. (Again, a warning is issued when the
local iteration fails to converge in a prescribed number of
steps.)

Finally, to avoid repeated unnecessary
computations while editing the system interconnections, a
simulation button has been introduced to disable J-DSP’s
automatic block execution. Instead the simulation
computations are performed on-demand by pressing this
button.

4. J-DSP-C FUNCTIONALITY

A fundamental set of functions has been
developed in order to accommodate the need for control
systems simulations. The currently available blocks are

briefly described below, grouped in terms of their
fundamental properties.

4.1. Signal generators

Signal generators are an essential part of every
simulation. The J-DSP editor has been fitted with two
signal generators, providing a variety of signals. The first
signal generator supplies a simple step signal that is
encountered most frequently in control systems
simulations. It is simple to use and within easy reach. The
second signal generator has been designed to offer a more
elaborate selection of signals. Among others, this block
provides discrete impulses, sinusoids, sinc functions,
random signals with either uniform, Gaussian, or
Rayleigh distributions and exponential signals. Where
applicable, signals can be chosen to repeat periodically.

4.2. Memoryless Systems and Arithmetic operations

These include summation nodes, gains and
various other blocks performing arithmetic operations.
For example, the user can multiply two signals, compute
their exponential or their natural logarithm.

4.3. Dynamical Systems

Currently this class contains linear dynamical
systems that can be specified in terms of their transfer
function or their state-space description. The transfer
function block is used to enter a rational transfer function
describing a system. More precisely, this block simulates
a system given a transfer function in the form

i
n

i
i

i
n

i
i

sa

sb
sH

∑

∑

=

==

0

0)(

The numerator and denominator coefficients and are
entered in the block’s dialog box, shown in Figure 4.

ib ia

An alternative and more general way to specify a
linear system is with its state-space description. This
block implements the equation

x Ax Bu
y Cx Du

= +
= +

&

where, , and , , ,nxn nxm pxn pxmA R B R C R D R∈ ∈ ∈ ∈
, ,n m px R u R y R∈ ∈ ∈ . x is the state vector, u is the

system input and y is the system’s output response.
Currently, the maximum number of states is limited to 10.
The dialog window for this block is shown in Figure 5,
along with a window for entering a matrix. Notice that the
user can select to enter matrices in canonical or other

common forms, where many of the entries have fixed
values that are automatically initialized.

Figure 4: Rational transfer function dialog window

Figure 5: State Space system’s dialog window

4.4. Plotting and Visualization Blocks

The results of a simulation can be examined
using the graphical output capabilities of the Plot block.
This block simply plots its input in a linear or logarithmic
scale. It has zooming capabilities and can provide
statistical properties of the displayed signal. In the same
family, the Bode and Nyquist plot blocks can be used to
visualize system properties and aid the design of control
systems. The Bode plot displays the magnitude and phase
of the system transfer function (see Figure 6), while the
Nyquist block plots real versus imaginary parts.

4.5. Blocks Under Development

Future enhancements of the J-DSP-C editor will
include additional components to facilitate the modeling
and simulation of nonlinear systems (e.g., inverted
pendulum and other mechanical systems). Additional
blocks will perform matrix manipulations and least-

squares approximation, enabling the implementation of
adaptive systems. Other enhancements include the
support of systems with multiple inputs and outputs, and
the ability to group several blocks into a composite one.
Notice that the ability to change the block shape and
number of input/output ports has been introduced with
this goal in mind.

Figure 6: Bode plot

5. EXAMPLES

In this section, two illustrative examples of J-
DSP-C simulations are presented. The first example
simulates a simple unity feedback system with

2

3 2

4 5()
6 3 1
s sH s

s s s
+ +

=
0+ + +

The block diagram and the plot of the simulation result
for a step reference input are shown in Figure 7.

In the second example, the feedback system
contains two transfer functions, one in the forward path
and the other in the feedback path. Here,

1 3 2

2()
3 13

sH s
s s s

+
=

+ + + 2
2

2 3 2

4 5()
6 3 1
s sH s

s s s
+ +

=
+ + + 0

For this case, the block diagram and the plot of the
simulation result for a step reference input are shown in
Figure 8.

Figure 7: Block diagram and simulation results for example 1.

Figure 8: Block diagram and simulation results for example 2.

6. CONCLUSIONS

This paper presented the various enhancements
and modifications of the J-DSP software tool for use in
control systems education. This new version, J-DSP-C, is
an object-oriented programming environment, that
enables the simulation of feedback systems in a
straightforward and easy to comprehend manner. The

feedback system is defined through a GUI editor by
connecting blocks together, maintaining a classical
textbook appearance.

Although it lacks the power, efficiency, and
generality of mainstream commercial software like
MATLAB/Simulink™, J-DSP-C is easy to use and can
provide a platform with sufficient flexibility to simulate
the typical exercises found in control systems education.
Its primary use is envisioned as a distance learning tool
because of its ability to run over the Internet through a
simple web browser. Furthermore, with its open
architecture, J-DSP-C is continuously improved with
respect to the collection of blocks available for use in
simulations. Combined with a report submission and
scoring facility, J-DSP-C integrates interactive examples
into web content to improve the quality and effectiveness
of control systems education.

8. REFERENCES
[1] A. Spanias et al, “Development and Evaluation of a Web-

Based Signal and Speech Processing Laboratory for
Distance Learning”, Proc. IEEE ICASSP-2000, Istanbul,
Vol. 6, pp. 3534-3537, June 2000.

[2] A. Spanias et al, “On-line laboratories for speech and image
processing and for communication systems using J-DSP”,
to appear at 2nd DSP-Education workshop, Pine Mountain
GA, Oct 13-16, 2002.

[3] J-DSP on-line help, http://jdsp.asu.edu

