
ON-LINE LABORATORIES FOR SPEECH AND IMAGE PROCESSING AND FOR
COMMUNICATION SYSTEMS USING J-DSP

A. Spanias, V. Atti, Y. Ko, T. Thrasyvoulou, M.Yasin, M. Zaman,

T. Duman, L. Karam, A. Papandreou, K. Tsakalis

Department of Electrical Engineering, MIDL - TRC
Arizona State University, Tempe, AZ 85287-7206, USA

ABSTRACT

J-DSP+ is a java-based object-oriented programming
environment that was developed at Arizona State University for
use in the undergraduate DSP class [1]. In this paper, we
describe innovative software extensions on J-DSP to
accommodate on-line laboratories for speech processing, image
processing, and communications systems. Significant
modifications in the object-oriented GUI of J-DSP that enable
simulation of feedback systems are also presented. The speech
processing functions enable on-line simulations of speech coding
algorithms and include PCM and ADPCM quantization as well
as more elaborate algorithms such as the LPC and the CELP.
Image processing functionalities include development of 2-D
signal processing capabilities including 2-D-FFT, 2-D-filter
design, and 2-D graphics and picture processing.
Communications functionality covers several aspects of analog
and digital modulation and demodulation. On-line laboratory
exercises have been developed in the aforementioned areas and
posted on a web site (http://jdsp.asu.edu). This site also includes
on-line evaluation forms for the exercises. Statistical and
qualitative evaluations that assess the learning experiences of the
students that use J-DSP are presented.

1. INTRODUCTION

At Arizona State University (ASU) DSP-related courses are well
attended by distance learning students. In order to provide
on-line laboratory experiences to distance learners the ASU
Multidisciplinary Initiative on Distance Learning (MIDL)
laboratory developed and tested successfully an exemplary
laboratory prototype tool [1], called Java-DSP (J-DSP), for use
in the undergraduate DSP class. This simulation environment
enables students to establish and execute DSP simulations from
any computer equipped with a browser. The MIDL is currently
developing and evaluating significant extensions of this J-DSP
prototype in other areas of undergraduate education. In this
paper, we present innovative software extensions on J-DSP to
accommodate on-line laboratories for speech processing, image
processing, and communications systems. Significant
modifications in the object-oriented GUI of J-DSP that enable
simulation of feedback systems are also discussed. The
extensions presented have been funded by the NSF CCLI
program and involve developing and disseminating the new

J-DSP functions along with a series of on-line laboratory
exercises.

2. EXISTING DSP FUNCTIONS IN J-DSP

The J-DSP editor is an object-oriented simulation environment.
All functions in J-DSP appear as graphical blocks that are
divided into groups according to their functionality. Existing
functionalities include: filter design, FFT, plotting,
autocorrelation, periodograms, correlograms, upsampling,
downsampling, AR time-series, signal generation, etc. Details on
these blocks are given in [1] and at http://jdsp.asu.edu.
Simulations are established by linking blocks and establishing a
flowgram.

Figure 1. J-DSP Environment
(J-DSP can be accessed from http://jdsp.asu.edu)

3. NEW J-DSP FUNCTIONS

Several new functions have been developed to support
experiments exposing undergraduates to additional DSP-related
topics such as speech analysis-synthesis, image processing, and
communications systems.

3.1. Speech Processing
 The speech processing blocks supported by J-DSP include:
frame-by-frame processing of speech, filter parameter
transformations, line spectrum pairs (LSP), bandwidth

+ Funded in part by a Grant from NSF CCLI. For more information on
J-DSP and its dissemination contact spanias@asu.edu.
J-DSP concept by A. Spanias

http://jdsp.asu.edu/
http://jdsp.asu.edu/
http://jdsp.asu.edu/
mailto:spanias@asu.edu

expansion, perceptual weighting, pulse code modulation (PCM),
differential pulse code modulation (DPCM), adaptive differential
pulse code modulation (ADPCM), quantization, vector
quantization (VQ), open-loop and closed-loop pitch estimation
methods, voicing decision, LPC-10e implementation, etc. A
sound player block is also provided to listen to the processed
speech record.

Figure 4. DPCM dialog window

The block diagram shown in Figure 4 represents a

simulation of a DPCM transmitter-receiver. The pitch estimation
block is implemented to compute the pitch based on AMDF,
open loop and closed loop methods.

Figure 5 shows the simulations of the LPC-10e
standard implemented in J-DSP. The LPC-10e federal standard
has been implemented as a separate module that processes 20ms
speech frames (160 samples). A special feature is provided to
view the updated parameter values (pitch, voicing decision, root
mean squared (RMS) energy and reflection coefficients) at the
end of each frame. Using the ‘Force’ option, provided in the
LPC-10e block, one could force all the voicing frames to be
voiced or unvoiced and/or force the pitch value to be a constant
and evaluate the effect of each parameter on the output speech.
Exercises have been developed to highlight the LPC concepts
through ADPCM and LPC10e.

Figure 2. LPC vocoder

A typical LPC vocoder flowgram with filter parameter

transformations is shown in Figure 2. The pole-zero
representation of the LP coefficients and LSP can be viewed.
The reconstructed speech, obtained by filtering the residual error
with the quantized LPC, is also shown. The quantizer block
performs uniform and non-uniform quantization (µ-law and
A-law). An example simulation demonstrating the concepts of
DPCM and ADPCM is shown in Figure 3.

[2]

DPCM output

ADPCM output

Figure 5. LPC module

The vector quantization block uses the Linde, Buzo
and Gray (LBG) algorithm to design codebooks. Figure 6 shows
the dialog window of the vector quantizer block, and the various
options provided. These include viewing the designed codebook
vector, MSE distortion curve, etc. Using the vector quantizer

Figure 3. DPCM and ADPCM

block, one can design codebooks of various sizes and test their
performance based on the overall and segmental SNR values.

Figure 6. Vector quantization based on the LBG algorithm

3.2. Time-Frequency Representations

In order to compute the time-varying spectra of speech and other
signals a 3-D spectrogram function was developed. Figure 7
shows the spectrogram plot of a speech signal. The spectrogram
block may be used to analyze the properties of speech segments
and other signals. Exercises with the spectrogram are also
provided.

Figure 7. Spectrogram plot in J-DSP

3.3. Image Processing

The new blocks implemented in J-DSP to facilitate the 2-D
signal processing techniques are: 2-D signal generator, filtering,
convolution, FIR filter design, FFT, frequency response,
transforms and select functions for image restoration and
enhancement. Students can perform simulations of window-
based 2-D FIR design. Low-pass, high-pass, band-pass and
band-stop filters can be designed using separable or non-

separable design techniques. 2-D FIR filters can be implemented
using time-domain convolution and FFT-based fast convolution.
2-D transforms include the discrete Fourier transform (DFT), the
discrete cosine transform (DCT), and the discrete wavelet
transform (DWT). Row-Column (RC) decomposition using a
1-D FFT has been implemented in the 2-D FFT block. A simple
2-D filtering system in J-DSP is shown in Figure 8.

Figure 8. A simple 2-D filtering system in J-DSP

Figure 9 shows a window based 2-D FIR design, using
a non-separable 2-D Kaiser window. Based on the filter
specifications of the 2D-FIR design block, an 11th order low pass
filter is designed. The impulse response of the designed filter can
be viewed as samples or as contours as shown in Figure 9.

Figure 9. Window-based 2-D FIR design

The 2-D DFT and the 2-D DCT blocks are
implemented as separable transforms, based on row-column
decomposition using 1-D FFT and 1-D DCT algorithms
respectively. The 2-D DWT is implemented using the Antonini
9/7 and 7/9 low-pass and high-pass filters. Figure 10 shows an
example of a level-1 2D discrete wavelet transform.

Conventional AM

DSB-SC AM

Figure 11. Conventional AM and DSB-SC modulation schemes

AM

 Figure 10. 2-D discrete wavelet transform (2-D DWT)
AM

3.4. Communication Functions

The J-DSP communication functions support simulations of
analog and digital communication systems. Analog modulation
blocks such as amplitude modulation (DSB-SC AM, SSB AM,
and conventional AM) and angle modulation (FM/PM) have
been developed. Digital modulation schemes include: binary
pulse amplitude modulation (PAM), M-ary PAM, phase shift
keying (PSK), quadrature PSK and M-ary PSK. Receiver blocks
supported are the matched filter demodulator and maximum
likelihood detector. A Monte Carlo simulation block has been
developed to compute bit error rate probabilities.

PM

PM

Figure 11 shows the spectra of the DSB-SC and
conventional amplitude modulated signals. In case of DSB-SC
AM scheme, the absence of the large carrier components around
the carrier frequency, is clearly evident. The channel block is
developed to simulate the additive white Gaussian noise
(AWGN) channel with user-defined noise power spectral
density. The envelope detector block, developed based on the
RC circuit, is used to demodulate the conventional AM signal.
The phase-locked loop (PLL) block is used to demodulate the
DSB-SC AM signal.

Figure 12. Performance of SSB-AM and PM schemes

A typical digital communication system with Monte

Carlo simulation is shown in Figure 13. A sequence generator
block was developed to generate the bit sequence. A Monte
Carlo block is used to analyze the performance curves
(probability of error versus the SNR plot) for various modulation
schemes. A ‘bit error rate (BER) and symbol error rate (SER)’
block is implemented to view the probability of error versus the
SNR per bit on a semi-log scale.

Figure 12 shows an example that compares the
performance of amplitude and angle modulation based on the
output signal-to-noise ratio (SNR) values.

Figure 14. An example simulation of a control system.

Figure 13. Computation of probability of error based on the
Monte Carlo simulation

The J-DSP Editor has the ability to automatically
generate J-DSP scripts. A user simply needs to create the desired
flowgram using the familiar drag and drop procedure of the
editor. Then, by selecting File and then Export as HTML, the
user receives the script ready to copy and paste into an HTML
file. This script also includes all the block parameters, exactly as
they were defined when the flowgram was saved, something
earlier versions were not capable of.

3.5. Control Systems Functions

In addition to the functions in other areas, more functionality has
been developed to facilitate control systems simulations.
However, due to the nature of these simulations and the need for
feedback, the new capabilities have been bundled with recent
developments in the J-DSP infrastructure, explained in section 4.
The controls systems simulation capabilities of J-DSP currently
involve blocks for state space and transfer function
representation of systems. More precisely, a state space block
simulates a system given in a state space form represented by
four matrices A, B, C, and D. The system implements the
equation

In addition to the development of the new script-
saving functionality, more work addresses the way blocks are
designed and manipulated in the J-DSP editor. However, this
work is currently being developed in a new, not yet distributed
J-DSP version. Changes in the Java object-oriented program and
the J-DSP GUI now facilitate state-space realizations of digital
filters as well as control systems simulations. Perhaps the most
important modification successfully implemented is the addition
of feedback capability. Most of the J-DSP code supporting the
GUI was re-written while at the same time blocks have been re-
designed to offer additional features. J-DSP blocks can now be
rotated and flipped thereby allowing the realization of feedback
systems.

x Ax Bu
y Cx Du
= +
= +

&

where x is the state vector, u is the system input and y is the
system output response.

Other J-DSP control blocks include a simple adder,
gain and a step signal generator. In addition, a Bode and Nyquist
plot blocks are currently under development. Figure 14 shows a
simple control simulation that includes two systems in cascade
and a feedback loop, a bode plot of the first plant and the step
response of the system.

5. ON-LINE EXERCISES USING J-DSP

Exercises have been developed to emphasize the concepts of
convolution, z-transform, filter design based on pole-zero
placement, windowing, FIR and IIR filter design methods, FFT,
power spectral density estimation based on correlogram and
periodogram methods. These exercises have been used in our
DSP class at ASU since 1999. Speech processing exercises
include: PCM, ADPCM, LPC vocoders, bandwidth expansion
and perceptual weighting filter. Students can experiment with
LPC transformations involving direct form, reflection

4. J-DSP INFRASTRUCTURE EXTENSIONS

Earlier J-DSP versions have been designed with the ability to
interpret parameters contained in a simple HTML (Hypertext
Markup Language) file and in turn load the J-DSP Editor with a
fully functional flowgram as described by these parameters. This
J-DSP Editor capability has been designed to allow for
interactive J-DSP content to be added in web pages.

coefficients (RC), and Line Spectrum Pairs (LSP). J-DSP
provides blocks that would facilitate the implementation of
simple vocoders and students can experiment with pitch
detection and its effect on speech synthesis. With regard to
image processing several exercises have been designed including
filter design, image filtering and enhancement, 2-D spectra, the
DCT and its utility in JPEG, etc. Communication systems
exercises include AM and FM modulators and demodulators,
simulations with noise, digital modulation simulation and
evaluation, and computation of bit error rates.

6. LEARNING ASSESSMENT

J-DSP user evaluation is obtained by means of on-line forms.
The electronic forms have been developed for the evaluation of
the J-DSP simulator and the on-line laboratory exercises.
Qualitative as well as quantitative data is collected automatically
and stored on the network. General assessment includes
providing feedback on the DSP functions while specific forms
focus on each exercise specifically by posing questions to
determine whether the student has learned a concept. The
evaluation forms can be accessed through the J-DSP web site
http://jdsp.asu.edu/. The users fill out and submit such forms
instantaneously. The feedback data too, can be accessed by links
provided on-line.

Users provided valuable feedback by answering a
comprehensive set of questions targeted to assess the usability
and usefulness of the software. Overall, the response is very
promising. 95% of the users appreciated the idea of an internet-
based simulation tool such as J-DSP. From Figure 15 it is clear
that it took most (70%) of the users less than half an hour to
learn using the software. In fact, 85.5% of the users agreed that
they would consider using J-DSP for small simulations.

Table-1: Statistics based on user evaluations

Evaluation questions

St
ro

ng
ly

A

gr
ee

A
gr

ee

N
eu

tra
l

D
is

ag
re

e

St
ro

ng
ly

D

is
ag

re
e

1. Establishing and
connecting blocks is
easy.

53% 39% 7% 1% 0%

2. The graphical
interface of J-DSP is
intuitive and user-
friendly.

31% 63% 5% 1% 0%

3. Setting up the
required lab
simulations was easy

40% 52% 8% 0% 0%

The students from the DSP and communication classes

provided feedback directly related to the lab exercises. Students
pointed out different parts of a lab exercise that helped them
understand a certain concept. 87% of the students agreed that the

FIR and IIR filter exercise helped them understand which
window is suitable for sharp transitions in a filter. From the FFT
exercise, 88% could clearly visualize signal symmetries on the
FFT spectra. 91% users reported that the Z transform exercise
helped them understand the relation between the positions of
poles and zeros with the frequency response plots. 86% students
agreed that the modulation exercise helped them understand the
concepts of amplitude and angle modulation schemes.

Figure 15. User feedback

7. REMARKS

This paper presented NSF funded extensions on J-DSP along
with assessment results. Future J-DSP Editor versions will allow
a user to create and save composite blocks, by grouping together
a collection of primary blocks. New blocks have been designed
to be easily adjustable with regard to the number of inputs and
outputs. Each block can now have up to ten inputs or outputs on
each side. Finally, in order to achieve better block and
connection placement, changes have been made in order to allow
a user to drag and modify a connection line as necessary.

8. REFERENCES

[1] A. Spanias et al, “Development and Evaluation of a Web-

Based Signal and Speech Processing Laboratory for
Distance Learning”, Proc. IEEE ICASSP-2000, Istanbul,
Vol. 6, pp. 3534-3537, June 2000.

[2] Andreas Spanias, “Speech Coding: A Tutorial Review”, in
the Proc. of IEEE, Vol. 82, No.10, pp. 1541-1582, Oct.
1994

http://jdsp.asu.edu/

	ON-LINE LABORATORIES FOR SPEECH AND IMAGE PROCESSING AND FOR COMMUNICATION SYSTEMS USING J-DSP
	A. Spanias, V. Atti, Y. Ko, T. Thrasyvoulou, M.Yasin, M. Zaman, �T. Duman, L. Karam, A. Papandreou, K. Tsakalis
	Department of Electrical Engineering, MIDL - TRC
	Arizona State University, Tempe, AZ 85287-7206, USA

