Section M9 Audio effects blocks

These blocks appear at the top of the simulation area

Table of blocks		
Block notation	Description	
DTMF tones	Generates Dual Tone Multi Frequency tones	
MIDI	Generates MIDI sounds	
Echo	Generates echo effect of the input signal	
Reverb	Generates reverb effect of the input signal	
Reverb Demo	Simulates five specific reverb types	

DTMF tones MIDI Echo Reverb Reverb Demo

Block name : DTMF tones

Notation: DTMF tones

Description: Generates dual-tone-multi-frequency (DTMF) tones used in landline telephony applications. This block generates a single tone of length: 256 (1 frame), 1280 (5 frames) and 8192 (32 frames) samples. It also generates a sequence of pre-recorded tones. The sampling frequency is 8KHz. The tones can be played back using the J-DSP provided sound player, and used in a DSP simulation.

Pin assignment:

	Pin	Description
	1	DTMF tone
D.T.ME tomas	2	
	3	
	4	
	5	
	6	

Dialog window(s):

DTMF tone generator				
DTMF				
1	2	3		
4	5	6		
7	8	9		
*	0	#		
	Space			
Select frames to play:				
O One	C Five(5)			
 All 	C Record			
Close Update Help Reset				
Java Applet Window				

(a)DTMF tones dialog window

Script use:

Name: DTMF

Example code: cod

Equation(s) Implemented :

$$y = \cos(2\boldsymbol{p} f_1 nT) + \cos(2\boldsymbol{p} f_2 nT)$$

where f_1 and f_2 are chosen from the tone frequencies (697, 770, 852, 941, 1209, 1336, 1477 (Hz)). The sampling frequency is 8 KHz, i.e., T = 0.125ms

Block name : MIDI Notation: MIDI

Description: Simulates a piano keyboard and generates Musical Instrument Digital Interface (MIDI) sounds at the frequencies described by the MIDI standard. The MIDI block can generate a single tone of length: 256 (1 frame), 1280 (5 frames) and 8192 (32 frames) samples. It can also generate a sequence of pre-recorded tones. The sampling frequency is 8KHz. All the tones can be used in a DSP simulation and are audible using the J-DSP provided sound player.

Pin assignment:

Dialog window(s):

Script use:

Name: MIDI Example code: code: code: B1-MIDI(2,1)">

Equation(s) Implemented :

 $y = \cos(2\mathbf{p} fnT)$ where *f* is taken from a MIDI standard table [www.midi.org]

Block name : Echo Notation: Echo

Description: This block generates the echo effect of the input signal. The echo effect is obtained by mixing the input signal with its delayed version. The proportion of the delayed signal to the "clean" original signal determines how obvious the echo is, and the delay signifies the echo period.

Pin assignment:

Pin	Description
1	Input time-domain signal
2	Output signal with echo
3	
4	
5	
6	

Dialog window(s):

Echo				×
Delay	r. 500	Gair	n: 0.75	
	Close	Update	Help	
Java Applet Window				

(a)Echo dialog window

Script use:

Name: Echo Example code: code: "2" value="B2-Echo(1,4)"

Equation(s) Implemented :

$$y(n) = x(n) + b x(n-R)$$

R = the number of echo delay in samples. In order to have a distinguishable echo, R should be relatively large. b is the attenuation constant (|b| < 1). Recommended values to perceive an echo are b=0.75 and R=500

Block name : Reverberation

Notation: Reverb

Description: This block implements a reverberation effect on the input signal. Reverberation is obtained by mixing the input signal with the delayed versions of its feedback. The effect of the feedback results in multiple echos.

Pin assignment:

Pin	Description
1	Input time-domain signal
2	Output signal
3	
4	
5	
6	

Dialog window(s):

Reverb 🔀				
Feedback Delay: 500				
Feedback Gain: 0.5				
Close	Update	Help		
Java Applet Window				

(a)Reverb dialog window

Script use:

Name: Reverb Example code: code: "3" value="B3-Reverb(2,4)">

Equation(s) Implemented :

 $y(n) = x(n) + b \ y(n-R)$ *R* = feedback delay in samples. *b* is the attenuation constant (|*b*| < 1).

Block name : Reverberation Demo

Notation: *Reverb.Demo*

Description: This block is a demonstration of the reverberation effect, simulating five specific cases given by, "Cavern" (delay=600, gain=0.7), "Dungeon" (delay=160, gain=0.8), "Garage" (delay=240, gain=0.4), "Acoustic Lab" (delay=128, gain=0.6) and "Closet" (delay=40, gain=0.1).

Pin assignment:

Dialog window(s):

Reverb Settings			
Cavern C Dungeon		ingeon	
C Garage C Acoustic Lak		oustic Lab	
C Closet			
Close	Update	Help	
Java Applet Window			

(a)Reverb.Demo dialog window

Script use:

Name: ReverbDemo Example code: code: code reverbDemo(4,3)">

Equation(s) Implemented :

$$y(n) = x(n) + b. y(n-R)$$

R = feedback delay in samples. b is the attenuation constant (|b| < 1).