Section M8: Speech blocks

These blocks appear at the top of the simulation area

Table of blocks	
Block notation	Description
Autocorr	Computes the autocorrelation sequence of the input signal
LPC	Calculates the linear predictor coefficients (LPC)
LPC+	Computes the LP coefficients
<i>LPC -> RC</i>	Converts the LP coefficients to reflection coefficients (RC)
RC -> LPC	Converts reflection coefficients to LP coefficients
RC-> LAR	Computes the log-area-ratio values (LARs)
LPC ->LSP	Converts LP coefficients to line spectral pairs (LSP)
LSP->LPC	Computes LP coefficients from the LSP
BW Exp	Function to expand the bandwidth of the filter
Inv.TF	Reciprocates the input transfer function
Prcp.Fil	Performs perceptual weighted filtering

 Autocorr
 LPC
 LPC->RC
 RC->LPC
 LPC->LSP
 LSP->LPC
 BW Exp
 Inv.TF
 Prcp.Fil

Block name : Autocorrelation

Notation: Autocorr

Please refer to section M7, block M7.1

M8.2

 Block name :
 LP coefficients
 Notation:
 LPC

 Please refer to section M7, block M7.2

 M8.3

 Block name :
 LP coefficients +
 Notation:
 LPC+

Please refer to section M7, block M7.3

Block name : LPC to RC

Notation: *LPC->RC*

Description: This block converts the direct-form LP coefficients (a_i) to reflection coefficients (k_i) . The Levinson recursion algorithm is used to implement the LPC to RC conversion. A checkbox option is provided to view the LP coefficients and reflection coefficients.

Pin assignment:

Dialog window(s):

	Reflection Coefficients
	Order: 10
	Refl. Coefficients
	● RC C LPC
	k[0]: -0.2946 k[1]: 0.0402 k[2]: 0.0976 k[3]: 0.0172 k[4]: -0.2431
	k[5]: -0.141 k[6]: -0.2003 k[7]: 0.1485 k[8]: -0.0062 k[9]: 0.016
	Close Update Help
	Java Applet Window
	(a)LPC->RC dialog window
Script use: Name: Inc?	Pre

Example code: StateSt

Block name : RC to LPC

Notation: *RC->LPC*

Description: This block computes the LP coefficients (a_i) from the reflection coefficients (k_i) .

Pin assignment:

Dialog window(s):

LP Coefficients
Order: 10
LP Coefficients
C RC (FC
a[0]: 1.0 a[1]: -0.2733 a[2]: 0.0063 a[3]: 0.0265 a[4]: 0.0878 a[5]: -0.1899
a[6]: -0.0832 a[7]: -0.2359 a[8]: 0.1503 a[9]: -0.0106 a[10]: 0.016
Close Update Help
Java Applet Window

(a)RC->LPC dialog window

Script use:

Name: rc2lpc Example code: code: area name = "3" value = "B3-rc2lpc(3,1)">

Block name : RC to LAR

Notation: *RC->LAR*

Description: This block converts the reflection coefficients to log area ratios (LARs).

Pin assignment:

Dialog window(s):

Log Area R	atios			×
Name: 50				
Order. 10				
		Log Area Ratios		
LAR[0]: -0.6072	LAR[1]: 0.0805	LAR[2]: 0.196	LAR[3]: 0.0345	LAR[4]: -0.4961
LAR[5] -0.2839	LAR[6]: -0.4062	LAR[7]: 0.2993	LAR[8]: -0.0124	LAR[9]: 0.0321
	CI	ose Update	Help	
Jawa Anolet Window				

(a)RC->LAR dialog window

Script use:

Name: rc2lar Example code: code: code: "3" value = "B3-rc2lar(3,1)">

Equation(s) Implemented :

$$LAR(i) = \left(\frac{1+k_i}{1-k_i}\right)$$

where $k_{i=}$ reflection coefficients, LAR(i) = Log area ratio (i)

Block name: LPC to LSP

Notation: LPC->LSP

Description: This block computes the line spectral pairs (LSP) from the LP coefficients.

Pin assignment:

Dialog window(s):

(a)LPC->LSP dialog window

Script use:

Name: lpc2lsp Example code: State
Example code: State
State<

Equation(s) Implemented :

The sum polynomial $F_1(z)$ is given by, $F_1(z) = \frac{A(z) + z^{-11}A(z^{-1})}{1 + z^{-1}}$ The difference polynomial $F_2(z)$ is given by, $F_2(z) = \frac{A(z) - z^{-11}A(z^{-1})}{1 - z^{-1}}$ Each polynomial has five conjugate roots on the unit circle and they alternate each other.

Block name : LSP to LPC

Notation: LSP->LPC

Description: This block computes the LP coefficients from the line spectral pairs.

Pin assignment:

Dialog window(s):

LPC Coefficients
Name: 7e
Order: 10
LPC coefficients
a[0]: 1.0 a[1]: -1.0968 a[2]: 0.4374 a[3]: -0.1904 a[4]: 0.5455 a[5]: -0.3978
a[6]: -0.0617 a[7]: 0.1363 a[8]: 0.4543 a[9]: -0.3365 a[10]: -0.0194
Close Update Help
Java Applet Window

(a)LSP->LPC dialog window

Script use:

Name: lsp2lpc Example code: State
<p

Equation(s) Implemented :

$$A(z) = \frac{F_1(z) + F_2(z)}{2}$$

where, $F_1(z) =$ sum polynomial, $F_2(z) =$ difference polynomial, and A(z) = LP filter

Block name : Bandwidth expansion **Notation**:

Notation: *BW. Exp.*

Description: This block performs the bandwidth expansion operation.

Pin assignment:

Dialog window(s):

Bandw	/idth 🔀	
Bandwidth Expansion		
Exp. Coef	t 0.9	
Close	Update Help	
Java Applet	Window	

(a)BW. Exp. dialog window

Script use:

Name: BWExp Example code: code: = "3" value = "B3-BWExp(3,1)">

Equation(s) Implemented :

Input filter transfer function, $H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} \dots + b_{10} z^{-10}}{1 + a_1 z^{-1} + a_2 z^{-2} \dots + a_{10} z^{-10}}$ Bandwidth expanded filter, $H_B(z) = \frac{b_0 + b_1 g z^{-1} + b_2 g^2 z^{-2} \dots + b_{10} g^{10} z^{-10}}{1 + a_1 g z^{-1} + a_2 g^2 z^{-2} \dots + a_{10} g^{10} z^{-10}}$

where g is the bandwidth expansion coefficient.

Block name : Inverse Transfer Function Notation: Inv. TF

Description: This block inverts the transfer function at its input.

Pin assignment:

2>	Pin	Description
	1	Filter coefficients
bur TE	2	Inverse transformed transfer function
9g	3	
	4	
	5	
>1	6	

Dialog window(s):

-None-

Script use:

Name: Inv.TF Example code: code: = "3" value = "B3-Inv.TF(3,1)">

Equation(s) Implemented :

Input filter,
$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} \dots + b_{10} z^{-10}}{1 + a_1 z^{-1} + a_2 z^{-2} \dots + a_{10} z^{-10}}$$

Inverse transformed transfer function, $H_{I}(z) = \frac{(1 + a_1 z^{-1} + a_2 z^{-2} \dots + a_{10} z^{-10})/b_0}{1 + (b_1 z^{-1} + b_2 z^{-2} \dots + b_{10} z^{-10})/b_0}$

Block name : Perceptual weighted filtering Notation: Prcp.Fil.

Description: This block performs the perceptual weighted filtering or simply perceptual weighting. The weights ?1, ?2 can be entered by the user.

Pin assignment:

Dialog window(s):

Perceptual 🔀	
Perceptua	l Weigthing Filter
Gamma 1:	0.9
Gamma 2:	0.6
Close	Update Help
Java Applet V	Vindow

(a)Prcp.Fil dialog window

Script use:

Equation(s) Implemented :

Perceptual weighting filter is given by
$$W(z) = \frac{A(z/g_1)}{A(z/g_2)} = \frac{1 + \sum_{i=1}^{10} g_1^i a_i z^{-i}}{1 + \sum_{i=1}^{10} g_2^i a_i z^{-i}}$$

10

 g_1, g_2 are the perceptual weights, and a_i are the LP coefficients.