## Section M8: Speech blocks

These blocks appear at the top of the simulation area

| Table of blocks | Description |
| :--- | :--- |
| Block notation | Computes the autocorrelation sequence of the input signal |
| Autocorr | Calculates the linear predictor coefficie nts (LPC) |
| $\boldsymbol{L P C}$ | Computes the LP coefficients |
| $\boldsymbol{L P C} \boldsymbol{+}$ | Converts the LP coefficients to reflection coefficients (RC) |
| $\boldsymbol{L P C} \boldsymbol{- >} \boldsymbol{R C}$ | Converts reflection coefficients to LP coefficients |
| $\boldsymbol{R C} \boldsymbol{- >} \boldsymbol{L P C}$ | Computes the log-area-ratio values (LARs) |
| $\boldsymbol{R C} \boldsymbol{- >} \boldsymbol{L A R}$ | Computes LP coefficients from the LSP |
| $\boldsymbol{L P C} \boldsymbol{- > \boldsymbol { L S P }}$ | Function to expand the bandwidth of the filter |
| $\boldsymbol{L S P} \boldsymbol{P} \boldsymbol{>} \boldsymbol{L P C}$ | Reciprocates the input transfer function |
| $\boldsymbol{B W} \boldsymbol{E x p}$ | Performs perceptual weighted filtering |
| $\boldsymbol{I n v . \boldsymbol { T F }}$ |  |
| $\boldsymbol{P r c p} \boldsymbol{F} \boldsymbol{F i l}$ |  |

[^0]
## M8. 1

Block name: Autocorrelation Notation: Autocorr

Please refer to section M7, block M7.1

M8. 2
Block name : LP coefficients Notation: LPC

Please refer to section M7, block M7.2

M8. 3
Block name: LP coefficients + Notation: LPC+

Please refer to section M7, block M7.3

M8. 4
Block name : LPC to RC Notation: LPC->RC

Description: This block converts the direct-form LP coefficients $\left(a_{i}\right)$ to reflection coefficients $\left(k_{i}\right)$. The Levinson recursion algorithm is used to implement the LPC to RC conversion. A checkbox option is provided to view the LP coefficients and reflection coefficients.

## Pin assignment:



| Pin | Description |
| :---: | :--- |
| 1 | LP coefficients of order $10, a_{i}$ |
| 2 | Reflection coefficients, $k_{i}$ |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

## Dialog window(s):


(a)LPC->RC dialog window

## Script use:

Name: lpc2rc
Example code: $\langle$ param name $=" 3$ " value $=$ "B3-lpc2rc(3,1)">

M8. 5
Block name: RC to LPC Notation: RC->LPC

Description: This block computes the LP coefficients $\left(a_{i}\right)$ from the reflection coefficients $\left(k_{i}\right)$.
Pin assignment:


| Pin | Description |
| :---: | :--- |
| 1 | Reflection coefficients, $k_{i}$ |
| 2 | LP coefficients of order $10, a_{i}$ |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

## Dialog window(s):



Script use:
Name: rc2lpc
Example code: <param name $=" 3 "$ value $=$ "B3-rc2lpc $(3,1) ">$

M8. 6

## Block name: RC to LAR <br> Notation: RC->LAR

Description: This block converts the reflection coefficients to log area ratios (LARs).
Pin assignment:

|  |  | Pin | Description |
| :---: | :---: | :---: | :---: |
|  |  | 1 | Reflection coefficients, $\underline{\underline{k}}_{\underline{i}}$ |
|  |  | 2 | Log area ratios (LARs) |
| ${ }_{\text {sc }}$ | 2> | 3 |  |
|  |  | 4 |  |
|  |  | 5 |  |
| >1 |  | 6 |  |

## Dialog window(s):


(a)RC->LAR dialog window

## Script use:

Name: rc2lar
Example code: <param name $=$ " 3 " value $=$ "B3-rc2lar( 3,1 )">
Equation(s) Implemented :

$$
\operatorname{LAR}(i)=\left(\frac{1+k_{i}}{1-k_{i}}\right)
$$

where $k_{i=}$ reflection coefficients, $L A R(i)=$ Log area ratio (i)

M8.7
Block name: LPC to LSP Notation: LPC->LSP
Description: This block computes the line spectral pairs (LSP) from the LP coefficients.
Pin assignment:

|  |  | Pin | Description |
| :---: | :---: | :---: | :---: |
|  |  | 1 | LP coefficients, $a_{i}$ |
|  |  | 2 | Line spectral pairs, $F_{i}$ |
| ${ }_{6 \mathrm{~d}}{ }^{\text {dec-asp }}$ | 2> | 3 |  |
|  |  | 4 |  |
|  |  | 5 |  |
| 1> |  | 6 |  |

## Dialog window(s):



## Script use:

Name: lpc2lsp
Example code: <param name $=$ " $3 "$ " value $=" B 3-1 \mathrm{lpc} 21 \mathrm{sp}(3,1) ">$

## Equation(s) Implemented :

The sum polynomial $\mathrm{F}_{1}(\mathrm{z})$ is given by, $F_{1}(z)=\frac{A(z)+z^{-11} A\left(z^{-1}\right)}{1+z^{-1}}$
The difference polynomial $\mathrm{F}_{2}(\mathrm{z})$ is given by, $F_{2}(z)=\frac{A(z)-z^{-11} A\left(z^{-1}\right)}{1-z^{-1}}$
Each polynomial has five conjugate roots on the unit circle and they alternate each other.

## Block name: LSP to LPC <br> Notation: LSP->LPC

Description: This block computes the LP coefficients from the line spectral pairs.
Pin assignment:


| Pin | Description |
| :---: | :--- |
| 1 | Line spectral pairs, $F_{i}$ |
| 2 | LP coefficients, $a_{i}$ |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

## Dialog window(s):


(a)LSP->LPC dialog window

## Script use:

Name: 1sp2lpc
Example code: <param name $=$ " 3 " value $=$ "B3-lsp2lpc $(3,1) ">$

## Equation(s) Implemented :

$$
A(z)=\frac{F_{1}(z)+F_{2}(z)}{2}
$$

where, $F_{1}(z)=$ sum polynomial, $F_{2}(z)=$ difference polynomial, and $A(z)=$ LP filter

M8.10
Block name: Bandwidth expansion Notation: BW. Exp.
Description: This block performs the bandwidth expansion operation.
Pin assignment:


| Pin | Description |
| :---: | :--- |
| 1 | Filter coefficients |
| 2 | Bandwidth expanded filter coefficients |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

## Dialog window(s):


(a)BW. Exp. dialog window

## Script use:

Name: BWExp
Example code: <param name $=$ " 3 " value $=$ "B3-BWExp $(3,1)$ ">

## Equation(s) Implemented :

$$
\begin{aligned}
& \text { Input filter transfer function, } H(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2} \ldots+b_{10} z^{-10}}{1+a_{1} z^{-1}+a_{2} z^{-2} \ldots+a_{10} z^{-10}} \\
& \text { Bandwidth expanded filter, } H_{B}(z)=\frac{b_{0}+b_{1} \gamma z^{-1}+b_{2} \gamma^{2} z^{-2} \ldots+b_{10} \gamma^{10} z^{-10}}{1+a_{1} \gamma z^{-1}+a_{2} \gamma^{2} z^{-2} \ldots+a_{10} \gamma^{10} z^{-10}}
\end{aligned}
$$

where $\gamma$ is the bandwidth expansion coefficient.

## M8.11

Block name: Inverse Transfer Function Notation: Inv. TF

Description: This block inverts the transfer function at its input.
Pin assignment:


| Pin | Description |
| :---: | :--- |
| 1 | Filter coefficients |
| 2 | Inverse transformed transfer function |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

## Dialog window(s):

-None-

## Script use:

Name: Inv.TF
Example code: <param name $=$ " 3 " value $=$ "B3-Inv.TF $(3,1)$ ">
Equation(s) Implemented :

$$
\text { Input filter, } H(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2} \ldots+b_{10} z^{-10}}{1+a_{1} z^{-1}+a_{2} z^{-2} \ldots+a_{10} z^{-10}}
$$

Inverse transformed transfer function, $H_{I}(z)=\frac{\left(1+a_{1} z^{-1}+a_{2} z^{-2} \ldots+a_{10} z^{-10}\right) / b_{0}}{1+\left(b_{1} z^{-1}+b_{2} z^{-2} \ldots+b_{10} z^{-10}\right) / b_{0}}$

M8.12
Block name: Perceptual weighted filtering Notation: Prcp.Fil.

Description: This block performs the perceptual weighted filtering or simply perceptual weighting. The weights ? ${ }_{1}$, ?2 can be entered by the user.

Pin assignment:


| Pin | Description |
| :---: | :--- |
| 1 | LP coefficients, A(z) |
| 2 | Perceptual weighted output, $W(z)$ |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

## Dialog window(s):

| Perceptual ... | $\boxed{X}$ |  |
| :--- | :--- | :--- |
| Perceptual Weigthing Filter |  |  |
| Gamma 1: | $\boxed{0.9}$ |  |
| Gamma 2: | $\boxed{0.6}$ |  |
| Close | Update |  |
|  |  |  |
| Jelp |  |  |

## Script use:

Name: Prcp.Fil
Example code: <param name $=$ " 3 " value $=$ "B3-Prcp.Fil(3,1)">
Equation(s) Implemented :

$$
\text { Perceptual weighting filter is given by } W(z)=\frac{A\left(z / \gamma_{1}\right)}{A\left(z / \gamma_{2}\right)}=\frac{1+\sum_{i=1}^{10} \gamma_{1}{ }^{i} a_{i} z^{-i}}{1+\sum_{i=1}^{10} \gamma_{2}{ }^{i} a_{i} z^{-i}}
$$

$\gamma_{1}, \gamma_{2}$ are the perceptual weights, and $a_{i}$ are the LP coefficients.


[^0]:    

