Section M6: Filter blocks

These blocks appear at the top of the simulation area

Table of blocks				
Block notation	Description			
PZ-Placement	Allows entering pole/zero values			
PZ-Plot	Plots poles/zeros in polar coordinates			
FIR Design	FIR filter design			
IIR Design	IIR filter design			
Kaiser	Kaiser filter design			
Parks-McClellan	Parks-McClellan filter design			
LMS	LMS adaptive filter algorithm			
Freq Samp.	Frequency sampling			

	PZ Placement	PZ-Plot	FIR Design	IIR Design	Kaiser Design	Parks-McClellan	LMS	Freq. Sampling
4		· · · · ·						

Block name : Pole Zero Placement

Notation: *PZ-Placement*

Description: This block allows the user to enter poles and zeros representing a filter. The corresponding filter coefficients are passed to the output. Poles and zeros are added as conjugate pairs, and no more than 10 (5 pairs) can be entered. They can be placed either graphically or manually. Graphical manipulation of poles and zeros is achieved through buttons that allow placing, moving and deleting. Manually placing poles and zeros can be done either in square or polar form.

Pin assignment:

Dialog window(s):

(a)PZ-Placement dialog window

Block name : Pole-Zero plot

Notation: *PZ-Plot*

Description: This block calculates and displays the poles and zeros of a transfer function in the z-plane. The block accepts filter coefficients at its input.

Pin assignment:

Dialog window(s):

(a)PZ-Plot dialog window

Script use:

Name: pzplot Example code: code: area name = "3" value = "B3-pzplot(3,1)">

Block name : FIR design

Notation: FIR

Description: Designs a finite impulse response (FIR) filter based on the windowing method. The windowing FIR filter design method is a straightforward technique implemented by expanding the frequency response of an ideal filter in a Fourier series and then truncating and smoothing the response using a window. The user needs to supply the following information: *Window type*: Hamming, Hanning, Blackman, Bartlett, rectangular or Kaiser | *Filter order* (maximum is 64) | *Type*: low-pass, high-pass, pass-band, or stop-band. Cut-off frequencies (f_c), take values from 0 to 1, where $f_c = I$ corresponds to half-the-sampling frequency.

Pin assignment:

Dialog window(s):

(a)FIR dialog window and filter design specifications

Script use:

Name: FIR Example code: StateSt

Block name : IIR design Notation: IIR

Description: Designs an infinite (length) impulse response (IIR) filter based on the bilinear transformation. Butterworth, Chebyshev -I & -II, and Elliptic filters are supported. The filter specifications are in terms of: *Filter type*- can be low-pass, high-pass or pass-band | Wp_1 , Ws_1 – pass-band and stop-band edge cut-off frequencies respectively, | Wp_2 , Ws_2 – second pass-band and stop-band edge cut-off frequencies (for pass-band filters) | PB, SB – pass-band and stop-band tolerances in dB. Cut-off frequencies (for pass-band filters) | PB, SB – pass-band and stop-band tolerances in dB. Cut-off frequencies (for pass from 0 to 1, where $f_c = 1$ corresponds to half-the-sampling frequency. The design process is illustrated in terms of the block diagram below:

Pin assignment:

Dialog window(s):

IIR Filter Design	×					
IIR Filter Parameters						
Name: a						
IIR filter: Elliptic	NumCoef: DenCoef: Pass-Band: 0.0935 1.0 (0.4,1.0) -0.298 0.1365					
Cut-off Frequencies:	0.4186 1.1107 Order: 4 -0.298 0.3148 0.0935 0.4779					
Wp1: 0.4 Ws1: 0.2	0.0 0.0 0.0 0.0 0.0 0.0					
Tolerances(dB):	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
PB: 5.0 SB: 50.0	_					
Close Update Help						
Warning: Applet Window						
(a) FID dialog window						

(a)FIR dialog window

Script use:

Name: IIR Example code: Since and the second second

Block name : Kaiser design Notation: Kaiser

Description: This block designs Kaiser FIR filters based on the windowing method. The design process involves calculating the Fourier series of the ideal filter and then multiplying it with a Kaiser window that best fits the filter specifications. Filter specifications are: *Filter type*: can be low-pass, high-pass, stop-band or pass-band | Wp_1 , Ws_1 – pass-band and stop-band edge cut-off frequencies respectively, | Wp_2 , Ws_2 – second pass-band and stop-band edge cut-off frequencies respectively (for pass-band filters) | *PB*, *SB* – pass-band and stop-band tolerances in dB.

Pin assignment:

Dialog window(s):

Kaiser FIR Filter Design 🛛 🔀					
Kaiser Filter Parameters					
Name: a					
Filter type: Stop-Band 💌	Coeff: Pass-Band:				
Cut-off Frequencies:	-0.1328 Order: 10 0.2329				
Wp1: 0.25 Ws1: 0.5	0.1864 Beta: 1.332 0.5491				
Wp2: 1.0 Ws2: 0.75	0.1864 0.2329				
Ripple(dB):	-0.1328				
PB: 20.0 SB: 25.0	-0.061				
Close Update Help					
Warning: Applet Window					

(a)Kaiser dialog window

Script use:

Name: Kaiser Example code: State
<pr

Equation(s) Implemented :

The order and value of \boldsymbol{b} of the Kaiser window are calculated by:

$$N = \frac{A-8}{2.285 \,\Delta \mathbf{w}} \quad \text{and} \quad \mathbf{b} = \begin{cases} 0.1102(A-8.7)....A > 50\\ 0.5842(A-21)^{0.4} + 0.07886(A-21)....21 \le A \le 50\\ 0...A < 21 \end{cases}$$

 $\Delta \omega$ is the transition band of the filter and A is equal to the smaller of PB and SB.

Block name :	Parks-McClellan	Notation:	Parks-Mc	
--------------	-----------------	-----------	----------	--

Description: This block designs FIR filters using the Parks-McClellan algorithm with min-max design. Filter specifications are: *Filter type*: can be low-pass, high-pass, stop-band, or pass-band | Wp_1 , Ws_1 – pass-band and stop-band edge cut-off frequencies respectively, | Wp_2 , Ws_2 – second pass-band and stop-band edge cut-off frequencies respectively (for pass-band filters) | PB, SB – pass-band and stop-band tolerances in dB.

Pin assignment:

1>	Pin	Description
	1	Filter coefficients
Darles Mr.	2	
Panes-nuc 3.	3	
	4	
	5	
	6	

Dialog window(s):

Parks-McClellan Algorithm	×			
FIR Filter Parameters				
Name: a				
Filter Type: Low-Pass 💌	^			
Cut-off Frequencies: Filter Order = 15 0.01297				
Wp1: 0.1 Ws1: 0.2 0.01859	=			
Wp2: 0.0 Ws2: 0.0 0.04121 0.05331				
Tolerances(dB): 0.06412				
PB: 3.0 SB: 20.0 0.07665 0.07665				
	×			
Close Update Help				
Java Applet Window				

(a)Parks-Mc. dialog window

Script use:

Name: ParksMac Example code: ParksMac(3,1)">

Block name :	Least Mean Squares Algorithm	Notation:	LMS	
--------------	---------------------------------	-----------	-----	--

Description: Implements the sequential least mean squares adaptive filtering algorithm.

Pin assignment:

Dialog window(s):

(a)LMS dialog window

Script use:

Name: LMS Example code: code: code: = "3" value = "B3-LMS(3,1)">

Equation(s) Implemented :

A new set of adaptive filter coefficients is calculated for every new iteration in order to reduce the mean squared error. The update equation is given by

$$\boldsymbol{b}_{n+1} = \boldsymbol{b}_n + \mu \boldsymbol{e}(n) \boldsymbol{x}_n$$

where
$$\mathbf{b}_n = \begin{bmatrix} b_0(n) \\ b_1(n) \\ \vdots \\ \vdots \\ b_{N-1}(n) \end{bmatrix}$$
 is the filter coefficient vector, $\mathbf{x}_n = \begin{bmatrix} x(n) \\ x(n-1) \\ \vdots \\ \vdots \\ x(n-N+1) \end{bmatrix}$, is the input vector and

 $e(n) = d(n) - \sum_{l=0}^{N-1} b_l(n)x(n-l)$ is the error signal. The step size μ is the adaptation constant that

controls the rate of convergence.

Block name : Frequency sampling

Notation: *Freq Samp*.

Description: This block designs a linear phase finite impulse response (FIR) filter based on the frequency sampling method. In the frequency sampling method an FIR impulse response is obtained by applying an IFFT on samples of a desired frequency response. The desired frequency response is drawn using the dialog window shown below.

Pin assignment:

Dialog window(s):

(a) FreqSamp. dialog window

Script use:

Name: FreqSamp Example code: Sample code:

Equation(s) Implemented :

$$h(n) = \frac{1}{N} \left[\sum_{k=1}^{N/2-1} 2 \left| H(k) \left| \cos(2\mathbf{p}k(n-a)/N \right|) + H(0) \right] \right]$$

$$a = (N-1)/2, \quad k = 0, \dots, N-1$$