Section M5: Frequency blocks

These blocks appear at the top of the simulation area

Table of blocks					
Block notation	Description				
FFT	Fast Fourier Transform algorithm				
IFFT	Inverse Fast Fourier Transform algorithm				
Pk Pking	Peak picking routine				
Magn.	Calculates the magnitude of the input signal				
Phase	Calculates the phase of the input signal				

Block name : Fast Fourier Transform Notation: FFT

Description: Implements the Fast Fourier Transform algorithm. The user can select a desired FFT size. Possible options are 8, 16, 32, 64, 128, or 256

Pin assignment:

Dialog window(s):

FFT Settings				
FFT Settings				
Name: a				
FFT Size: C 8 C 16 C 32 C 64 C 128 C 256				
Close Update Help				
Java Applet Window				

(a)FFT dialog window

Script use:

Name: fft Example code: <param name = "3" value = "B3-fft(3,1)">

Equation(s) Implemented :

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2p \, kn/N}, \qquad k = 0...N - 1$$

x(n) = input signal X(k) = output signal N = FFT length

Block name :	Inverse Fast Fourier Transform	Notation:	IFFT	
--------------	-----------------------------------	-----------	------	--

Description: Implements the Inverse Fast Fourier Transform algorithm. The user can select the desired inverse FFT size: 8, 16, 32, 64, 128, or 256.

Pin assignment:

Dialog window(s):

IFFT Setting	gs					×	
IFFT Settings							
Name: h							
IFFT Size:	C 8	O 16	O 32	O 64	O 128	256	
Close Update Help							
Warning: Applet Window							

(a)IFFT dialog window

Script use:

Name: ifft Example code: <param name = "3" value = "B3-ifft(3,1)">

Equation(s) Implemented :

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 p \ln n/N}, \qquad n = 0...N - 1$$

X(k) = input signal x(n) = output signal

Block name : Peak Picking

Notation: *PkPking*

Description: Selects a specific number of peaks from a frequency-domain signal. The first set of peaks or the highest magnitude ones can be selected. Here, the "Peaks selected" option allows users to specify how many peaks to be selected. For example, 64 is chosen in the graph below. In this case, the "First" option selects the first 64 peaks of the input signal and the "Highest" option selects the 64 peaks that are the larger in magnitude.

Pin assignment:

Dialog window(s):

(a)PkPking dialog window

Script use:

Name: peakpicking Example code: Substance Substance

Block name : Magnitude

Notation: Magn

Description: This block calculates the magnitude of a signal.

Pin assignment:

Dialog window(s):

-None-

Script use:

Equation(s) Implemented :

$$y(n) = |x(n)|^2$$

x(n) = input signal y(n) = Magnitude of the input signal

Block name : Phase

Notation: *Phase*

Description: This block calculates the phase of the input signal

Pin assignment:

Dialog window(s):

-None-

Script use:

Name: phase Example code: code: = "3" value = "B3-phase (3,1)">

Equation(s) Implemented :

$$\mathbf{f}(n) = \angle x(n)$$

x(n) = input signal f(n) = phase of the input signal