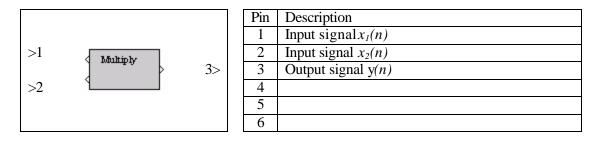
Section M4: Arithmetic blocks

These blocks appear at the top of the simulation area

Table of blocks	
Block notation	Description
Mult.	Calculates the product of two signals
log10()	Calculates the Log base 10 of the input signal
ln()	Calculates the natural log of the input signal
<i>exp()</i>	Calculates the exponential of the input signal
10^()	Calculates the 10th power of the input signal
Square	Calculates the sum of squares of the two input signals


Mult. log10() In() exp() 10^() Square

Block name : Multiplier

Notation: Mult

Description: Multiplies the two signals at its inputs.

Pin assignment:

Dialog window(s):

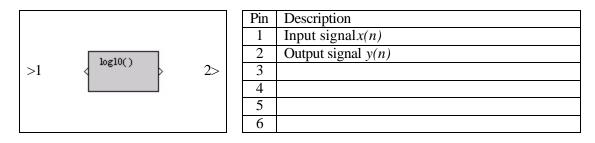
-None-

Script use:

Name: multiply Example code: Symple code: Symple code: Symple code:

Equation(s) Implemented :

$$y(n) = x_1(n) \cdot x_2(n)$$


 $x_1(n) =$ input signal at pin 1 $x_2(n) =$ input signal at pin 2 y(n) = output signal

Block name : Logarithm base 10

Notation: *Log10()*

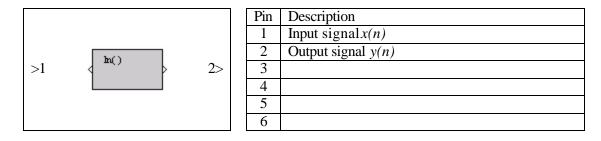
Description: This block calculates the common (base 10) logarithm of the input signal.

Pin assignment:

Dialog window(s):

-None-

Script use:


Equation(s) Implemented :

$$y(n) = \log_{10}(|x(n)|)$$

Block name : Natural logarithm (base e) **Notation**: *ln(*)

Description: This block calculates the natural (base e) logarithm of the input signal.

Pin assignment:

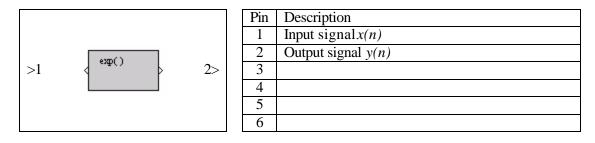
Dialog window(s):

-None-

Script use:

Name: ln Example code: code: code: state St

Equation(s) Implemented :


$$y(n) = \log_{e}(|x(n)|)$$

Block name : Exponential

Notation: *exp()*

Description: This block calculates the exponential of the input signal.

Pin assignment:

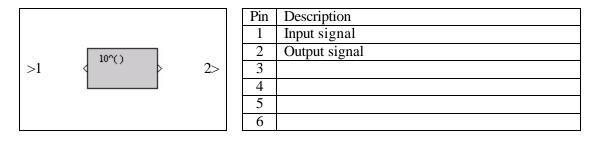
Dialog window(s):

-None-

Script use:

Name: exp Example code: code: = "3" value = "B3-exp(3,1)">

Equation(s) Implemented :


$$y(n) = e^{x(n)}$$

Block name : Power 10

Notation: $10^{()}$

Description: This block calculates the power 10 of the input signal

Pin assignment:

Dialog window(s):

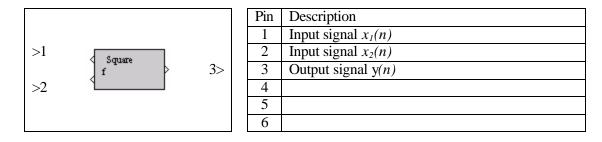
-None-

Script use:

Name: 10pow Example code: State

State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State</pr

Equation(s) Implemented :


$$y(n) = 10^{x(n)}$$

Block name : Sum of squares

Notation: Square

Description: This block calculates the sum of squares of the two signals at its inputs. The coefficients 'a' and 'b', are user-defined.

Pin assignment:

Dialog window(s):

Square Function	
Sum of squares of two signals (x1 & x2)	
y = a * [x1] ^ 2 + b * [x2] ^ 2	
Coefficient a: 1.5	
Coefficient b: 1.0	
Close Update Help	
Java Applet Window	

(a)Square dialog window

Script use:

Name: square Example code: code: "3" value = "B3-square(3,1)"

Equation(s) Implemented :

$$y(n) = ax_1^2(n) + bx_2^2(n)$$

 $x_1(n) =$ input signal at pin 1 $x_2(n) =$ input signal at pin 2 y(n) = output signal a, b are the weights entered by the user