DSP Algorithm and Software Development on the iPad/ iPhone Platform

Prof. Andreas Spanias

Acknowledgment:

Project supported in part by the nsf jdsp phase 3 grant and the sensip center and NCSS iucre, and thanks Sprint Communications and Debbie Vogel, Sprint SW Manager for providing devices.

Outline

- Motivation
- iJDSP Background
- Design Architecture
- New iJDSP Functions

Convolution Demo FIR Filter Design IIR Filter Design Hardware Interface iJDSP with WSN

- Assessments
- Future Work

Motivation

• Mobile Market

Huge growth of Smartphones and Tablet PC from 2007 to 2011

Units Shipped Per Year

Acquired from the online source: http://i-stuff.org/will-android-and-ios-take-over-the-pc-market/

Statistic acquired at March 2011

- Apple iOS : *27%*

iPhone

- Android OS: 37%

Samsumg Galaxy, LG, HTC, etc.

- RIM BlackBerry OS: 22%
- Windows Mobile: 10%
- Web OS: 3%
- Symbian OS: 2%

Smartphone market share

March '11, Nielsen Mobile Insights, National

Acquired from the online source: http://blog.nielsen.com/nielsenwire/?p=27418

Mobile Educational Tools

- Star Walk

Astronomy \$2.99

- HP 12c Financial Calculator Bussiness \$14.99
- Spectrogram Music: Visualize frequency over time \$9.99
- MATLAB Mobile

Computing & Simulation \$0.00 Command line only Lightweight mobile version Heavily relies on the Internet

- Need for DSP Mobile Tool
 - Standalone mobile application with intuitive graphical user interface.
 - Rich user interactions stimulate students interest.
 - Provide multi-touch experience to undergraduate/ graduate DSP students and distance learners.
 - Demonstrate signal processing concepts
 - Undergraduate labs on iPhone/ iPad
 - Infrastructure for research in sensor networks

iJDSP Background

• Features:

- Intuitive Graphic User Interface
- Free DSP Mobile App trough iTunes App Store
- Multitouch Experience
- Visualize DSP Functions
- Platform: *Compatible with iOS 3.2 or later*
- Development Environment: Xcode
- Hybrid Programming: *Objective C/C*

• User Gesture Recognition

Gesture RecognitionOperationDouble tap on a blockOpen a blockLong hold on a blockDelete the blockSingle tap on a pinMake a connectionSingle tap on a connectionDelete a connectionHold and drag on a blockMove blocksSwipe down/up on main canvasHide/show tool bar

• DSP Functions

Signal Generator
Digital Filter
Frequency Response
PZ Computation
FFT
Plot
Sound Recorder/ Player
Convolution Demo (new)
FIR Filter Design (new)
IIR Filter Design (new)

. . .

	(i-JDSP	Select parts		
	Signal Generator		>	
	Adder		>	
	Junction		>	
	Filter		>	
	Filter Coeff		>	
	Freq Resp		>	
	FET		>	
			_	-
	EEL		~	
	Freq Resp		>	

Design Architecture

• Model -View-Controller Paradigm^[1]

iJDSP Functions

New Added Functionalities in iJDSP

- Convolution Demo: Animated continuous / discrete convolution
- Filter Design: FIR /IIR filter design
- Collaborative Sensor Signal Processing Enabled by iJDSP:
 - Wireless connection between sensors and iPad
 - GUI for sensor motes on iPad
 - Inputs from multiple sensors: photometer, microphone, thermometer and accelerometer
 - Real-time plot of sensor data
 - Frame-by-frame process with DSP functions in iJDSP

• Convolution Demo

• FIR Filter Design

- Windowing Method
- Parks-McClellan Algorithm

Rectangular

Triangular

Hamming

Hanning

Blackmann

Kaiser

-Example:

Design a lowpass filter using Kaiser window method with following specifications,

 $\begin{array}{ll} 0.9 \leq \left| H(e^{j\Omega}) \right| \leq 1.1, & 0 \leq \Omega \leq 0.25\pi \\ \left| H(e^{j\Omega}) \right| \leq 0.056, & 0.5 \leq \Omega \leq \pi \end{array}$

(a)Set up for Kaiser Filter Design

(b)Main Menu of Kaiser FIR Filter Design

-Verified using MATLAB Code

• PZ plot in MATLAB

• PZ plot in iJDSP

• Magnitude of Frequency Response in MATLAB

• Linear Phase Constraint in MATLAB

• Magnitude of Frequency Response in iJDSP

• Linear Phase Constraint in iJDSP

• IIR Filter Design

Analog Approximation

Butterworth

Chebyshev I

Chebyshev II

Elliptic

-Example:

Design a lowpass Elliptic IIR filter with following specifications,

- Passband Cutoff frequency: 0.4 π ; Stopband Cutoff frequency: 0.6 π

• Tolerance in passband: 1dB; Tolerance in stopband: 45dB

(a)Set up for IIR Filter Design

(b)Main Menu of IIR Filter Design

-Verified using MATLAB Code

• PZ plot in MATLAB

• PZ plot in iJDSP

• Magnitude of Frequency Response in MATLAB

• Nonlinear Phase in MATLAB

• Magnitude of Frequency Response in iJDSP

• Nonlinear Phase in iJDSP

- Comparison between four types IIR

Use same filter parameters

•*Chebyshev I(Order = 6)*

Targeted Applications:

- Environmental Monitoring^[2]
- Security^[3]
- Gesture Recognition^[4]
- Tracking^[5]
- Localization

- New graphical user interface for WSN

- Workflow Chart

- DSP Functions with Sensor Data

Frame-by-frame processing with DSP functions in iJDSP

Assessments

- 34 students including 19 undergraduates from EEE407 class and 15 graduates from SenSIP Center participated.
- Over 75% students would recommend this application to their friends.

The pedagogy adopted in iJDSP workshop includes:

- (a) Lecture on the pertinent signal processing concepts
- (b) A pre-lab on the concepts involved in the laboratory exercise
- (c) A simulation exercise using iJDSP
- (d) A Post-lab to test student understanding of the concepts
- (e) Assessments involve students in the evaluation of the exercises and the software.

Statistics Based on the Assessment from Undergraduates in EEE407. Total Number of Students = 19.

Evaluation Questions	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
• Performing this exercise, you learned the concept of cascaded and parallel configuration of systems.	21.1%	31.6%	31.6%	15.7%	
• Do you now understand more clearly the relationship of the frequency response with the poles and zeros?	89.5%	10.5%			
• The contents of this exercise helped you understand the concepts of FIR and IIR filter design.	36.9%	52.6%	10.5%		
• After the lab, you know which of the IIR filters have ripple characteristic in both stopband and passband.	47.4%	31.6%	15.8%		5.2%

✓ Concept of pole and zero was improved by using iJDSP.

✓ 89.5% students felt iJDSP helped them to understand FIR and IIR filter design.

Statistics Based on the Assessment from Undergraduates from EEE407 . Total Number of Students = 19.

Evaluation Questions	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
• How long did it take to get used to the simulation environment on iJDSP?	(t< 5min) 73.7%	(5min <t<10min) 21.1%</t<10min) 	(10min <t<20min) 5.2%</t<20min) 	(20min <t<30min)< td=""><td>(t>30min)</td></t<30min)<>	(t>30min)
• Does the graphic user interface of iJDSP appeal to you?	26.4%	63.2%	5.2%	5.2%	
• It is easy to set up the lab simulations.	68.4%	31.6%			
• You feel comfortable performing simulations with the size of the screen.	31.6%	36.8%	10.5%	21.1%	
• Did you feel comfortable with the processing speed of the device for all the exercises?	73.7%	26.3%			

✓ 95% students got used to the environment within 10 min.

✓ 89.6% students liked user interface of iJDSP.

Statistics Based on the Assessment from Graduates from SenSIP Center. Total Number of Students = 15.

Evaluation Questions	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
• Performing this exercise, you learned the concept of cascaded and parallel configuration of systems.	53.4%	33.3%	13.3%		
• Do you now understand more clearly the relationship of the frequency response with the poles and zeros?	100%				
• The contents of this exercise helped you understand the concepts of FIR and IIR filter design.	40.0%	46.7%	13.3%		
• After the lab, you know which of the IIR filters have ripple characteristic in both stopband and passband.	46.7%	46.7%	6.6%		
• The contents of this exercise helped you understand the introductory spectral analysis concepts of the Fast Fourier Transform.	46.7%	40.0%	13.3%		

- ✓ Concept of pole and zero was improved by using iJDSP.
- ✓ 93.4% students felt iJDSP helped them to understand concept of filter design.
- ✓ 86.7% students understood FFT better after exercises.

Statistics Based on the Assessment from Graduates from SenSIP Center. Total Number of Students = 15.

Evaluation Questions	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
• How long did it take to get used to the simulation environment on iJDSP?	(t< 5min) 60.0%	(5min <t<10min) 20.0%</t<10min) 	(10min <t<20min) 6.7%</t<20min) 	(20min <t<30min) 6.7%</t<30min) 	(t>30min) 6.7%
• Does the graphic user interface of iJDSP appeal to you?	40.0%	53.3%	6.7%		
• It is easy to set up the lab simulations.	53.3%	46.7%			
• You feel comfortable performing simulations with the size of the screen.	40.0%	40.0%	13.3%	6.7%	
• Did you feel comfortable with the processing speed of the device for all the exercises?	80.0%	20.0%			

- ✓ 80.0% graduates get used to iJDSP within 10min.
- ✓ 93.3% students felt GUI of iJDSP appeal to them.
- ✓ Users liked larger screen size
- ✓ iJDSP users preferred to perform simulation on iPad.

Publications

- [1] S. Hu, "Interactive DSP mobile laboratories on iPhone/ iPad", Journal paper in preparation
- [2] J. Liu, S. Hu, J. Thiagarajan, X. Zhang, S. Ranganath, M. Banavar, A. Spanias. "Interactive DSP laboratories on mobile phones and tablets." *ICASSP*, Kyoto, Japan, March 2012.
- [3] S. Hu, J. Liu, A. Spanias, J. Thiagarajan, K. Ramamurthy, X. Zhang, M. Banavar, S. Ranganath, "Mobile DSP simulation app for design, testing, and education", *ESPA*, Las Vegas, Jan. 2012.
- [4] J. Liu, J. Thiagarajan, A. Spanias, K. Ramamurthy, S. Hu, M. Banavar. "iPhone/iPad based interactive laboratory for signal processing in mobile devices". *ASEE*, Vancouver, BC, June 2011.

References

- [1] Dave Mark and Jeff LaMarche, *Beginning iPhone Development: Exploring the iPhone SDK. Apress, 2008.*
- [2] G.W. Allen, K. Lorincz, and M.Welsh, "Deploying a wireless sensor network on an active volcano." IEEE Internet Computing, March/April 2006.
- [3] H. Kwon, V. Berisha, and A. Spanias, "Real-time sensing and acoustic scene characterization for security application." IEEE, 2008.
- [4] J. Chen, K. Kwong, D. Change, J. Luk, and R. Bajcsy, "Wearable sensors for reliable fall detection." IEEE-EMBS'05, 2005, pp. 3551–3554.
- [5] A. Swain, "Characterization of acoustic sensor motes for target tracking in wireless sensor networks," Master's thesis, Arizona State University, December 2006.

