Interfacing Java-DSP with Sensor Motes

by

H. M. Kwon, V. Berisha and A. Spanias

Ira A. Fulton School of Engineering, Department of Electrical Engineering, MIDL Lab
Arizona State University, Tempe, AZ 85287-5706, USA
http://jdsp.asu.edu/JDSP_sensors/index.html

Sensor, Signal and Information Processing Workshop
April 28th, 2005
Overview

- A Web-based DSP Simulation Tool
- Universally accessible DSP functions
- Embeds Interactive Simulations in Web pages
- Seamlessly Integrates Animated Demos

Seamless Integration with J-DSP enables real-time sensor signal analysis
- Java interface natural for remote sensing
- User-friendly GUI for computation/graphics using the J-DSP-Mote interface
- Hardware: *Mica2* from *Crossbow*
Motivation

- Wireless sensor networks have gained popularity in a number of applications.
- Simplify control of Mica2 platform through the object-oriented, platform independent structure of Java-DSP.
- Connectivity with the signal processing environment of Java-DSP allows for real-time sensor data analysis.
- Remote sensing possibilities.
- Control by Java based handheld devices (i.e. PDAs).
J-DSP: Background

BASIC FUNCTIONALITY IN J-DSP

- Fundamental DSP functions (FFT, IFFT, Windowing, etc.)
- Arithmetic Functionality
- Digital Filtering
- FIR/IIR Filter Design
- Spectral Estimation
- Multi-rate DSP
- Visualization Blocks
- Pole-Zero Demo
- Frequency Response
- Sensor Networks
Hardware Platform

- **Temperature:** Panasonic ERT-J1VR103J
- **Light (Photoresistor):** Clairex CL94L
- **Accelerometer:** ADI ADXL202 (MTS310CA only)
 - 2 axis
 - Resolution: ± 2mG
- **Microphone / Tone Detector**
- **Sounder:** Ario (centered at 4.5 kHz)
- **Magnetometer:** Honeywell HMC1002 (MTS310CA only)
 - Resolution: 134 mGauss

MIB(510) Gateway
- Serial port programmer

- **Targeted Applications:** Environmental Monitoring, Security, Source Localization, Tracking, Biological Applications
Java-DSP and the Motes

“Collaborative Sensor Signal Processing enabled by J-DSP”
Tiny OS and Java-DSP

- Java-DSP acts as an additional layer at the base station
- Lower layer processing is seamless to the user
Tiny OS & nesC

- Simple and powerful OS for low power
- Re-use of component
- “Hurry up and sleep”
- Scheduling based on events and tasks
- FIFO structure

Tiny OS

- TinyOS syntax and structure
- Dialect of C language
- A pre-processor
 - Converts wiring of high level modules into efficient code
 - nesC output is a c program file that is compiled and linked using gnu-gcc tools for a specific Mote

nesC Language
The Motes (MICA2 Platform)

- **Microprocessor**: Atmel ATmega 128L
 - 7.3728 MHz clock
 - 128 kB of Flash for program memory
 - 4 kB of SRAM for data and variables
 - 2 UARTs
 - Serial Pot Interface (SPI) bus
 - Inter IC (I2C) bus
- **Radio**: Chipcon’s CC1000
- **External serial flash memory**: 512 kB
- **51-pin expansion connector**
 - Eight 10-bit analog I/O
 - 21 general purpose digital I/O
- **User interface**: 3 LEDs
- **JTAG port**
- **Powered by two AA batteries**
 - 1850 mAh capacity
The MOTE Block

- GUI for the motes
- Control panel is used to control the individual motes and the RS232 settings
- MOTE block in J-DSP allows users to control individual motes
- Real-time graph plots data as it comes
Sensor Network Signal Processing with J-DSP

- A number of advanced signal processing features available in J-DSP
- You can connect the incoming data to existing blocks to create DSP systems
- Example: Fitting incoming data to an auto-regressive model
Remote Sensing with J-DSP

- Preliminary example shows possibilities for sensing and security applications
- Display panel shows which sensors are active
- Active Sensors:
 - Light
 - Sound
 - Temperature
 - Accelerometer
Future Directions

J-DSP and Motes for Research
- Source localization using the Motes
- Target tracking
- Interfacing with advanced J-DSP features (i.e. HMM)
- Collaborative remote sensing using J-DSP
- Implement sensor networks using J-DSP/Motes for smart home and security applications

J-DSP and Motes for Education
- Train UG and grad. students the basics of working with wireless Motes using the J-DSP GUI
- Train engineers and practitioners in real-time analysis of sensor data
- Use hands-on hardware/software approach to create a workforce trained in using sensors for security and other applications
Summary

- Simulation modules and blocks in J-DSP have been developed to control the Crossbow Motes.
- Object-oriented structure of J-DSP allows for easy manipulation of the Motes.
- Please visit http://jdsp.asu.edu for more information on J-DSP.
- J-DSP also supports: Statistical DSP simulations, Communications, Speech analysis-synthesis, 2D and Image processing, Spectrogram/time-frequency experiments, and Controls simulations.

Some figures taken from http://www.xbow.com