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Abstract—Ion-channel sensors which mimic naturally occur-
ring pore-forming proteins can be used to detect small metal
ions and organic molecules. A chamber with a lipid bilayer
hosting ion-channels produced by protein insertion constitutes
such a sensor. Each analyte produces a characteristic signal
pattern during its migration from one section of the chamber to
another through the ion-channels. A four chamber ion-channel
sensor array is built for accurate analyte detection. The power
distribution information in the transform domain has been
successfully used as discriminatory features for each chamber
signal. However, these features are not robust to noise and hence
result in a reduced classification performance. In this paper,
we pose the stabilization of PSD features extracted from noisy
segments as a matrix completion problem. Matrix completion
with a low rank assumption provides the stabilized features. We
demonstrate using a synthetic experiment that the proposed setup
achieves improved classification performance in comparison to
using the features directly. Furthermore, performing analyte
detection in real ion-channel data, using the proposed robust
features, provides reduction in false alarm rates.

Index Terms—Ion-channel, Analyte detection, Matrix comple-
tion.

I. INTRODUCTION

Pore forming proteins when inserted into a membrane
made of lipid bilayer produce ion-channels. These pores or
channels allow selective transport of analytes (certain ions and
organic molecules) across the membrane. The ion-channels
formed have a switching behavior [1]. The current across
the membrane containing the ion-channels is measured using
patch-clamp techniques. This current is called ion-channel
signal. The closed state of the ion-channel leads to lower
conductance and open state leads to higher conductance across
the membrane. A baseline current is associated to the closed
state and any increase in this current is associated with the
opening of the channel. The kinetic rates of switching from
open to close and vice versa are the characteristic of the protein
that forms the pores. The interaction between the ion-channels
and the analytes alter the switching pattern of the ion-channel
signal [2]. Signal processing methods have been developed to
extract such patterns in the signals and identify the analytes
using neural networks [3] [4].

In our previous work [5], we analyzed the power distribution
characteristics of ion-channel signals in the Fourier, Wavelet
and Walsh-Hadamard domains. It was shown that the power
distribution features, extracted from the frequency/sequency
domains, can effectively discriminate different ion-channel
signals. Here, we considered only signals generated using a
single channel formed and operational in the membrane. The
features were presented to a Support Vector Machine (SVM)

Fig. 1. Example state models used to generate ion-channel signals in QUB.
Model (a) is used to generate a signal in the absence of an analyte and model
(b) in the presence of an analyte with rate constants (100,100) and (160,120)
respectively.

classifier and the proposed setup achieved good classification
rates under low noise conditions. Fourier domain features pro-
vided the best results among the three features proposed. For
signals corrupted with noise, signal denoising was performed
prior to feature extraction.

In ion-channel experiments, the number of channels formed
is not controllable and hence it is typically unknown. In [6],
we employed the PSD features to obtain an estimate of the
number of channels operational using Support Vector Regres-
sion (SVR). It was shown that the number of active channels
correspondingly alters the energy of the PSD features. Hence,
a normalization of PSD features was performed by dividing
the PSD features with the number of channels operational.
The normalized PSD features of similar ion-channel signals
(same state model) with different number of channels active
were demonstrated to be close based on a weighted Euclidean
distance.

In this paper, we propose to build robust power spectral
density (PSD) features for ion-channel signals using matrix
completion algorithms. Exact and noisy matrix completion
algorithms under low rank conditions have been proposed
in [7]. The feature vectors of the noisy signal segments are
extracted and stacked into a matrix. Under noiseless conditions
this matrix is typically low rank, since the feature vectors
of consecutive segments are similar. However, the presence
of noise in the acquired data does not guarantee the low
rank behavior of the feature matrix. Hence, the entries of the
matrix with high variances are removed to build an incomplete
matrix. We now perform matrix completion under a low rank
condition and the columns of the completed matrix contain
the robust PSD feature vectors. Simulation results obtained
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Fig. 2. Synthetic data generated from QUB for the two state models. The
x-axis denotes the sample index and the y-axis the signal amplitude.

with synthetic single ion-channel data show that the stabi-
lized features achieve improved classification performance in
comparison to using the features extracted from the denoised
signals. Furthermore, we demonstrate the effectiveness of the
proposed robust features in reducing the false alarm rates when
applied to analyte detection.

The rest of the paper is organized as follows. In Section II,
we discuss the mathematical background of ion-channel sig-
nals and the PSD feature extraction procedure. The generation
of synthetic data from QUB and the experimental data from
the four chamber setup are also described in this section. The
proposed framework that employs matrix completion to obtain
robust PSD features is described in section III. Section IV
presents the experimental results for classification and analyte
detection. Section V concludes the paper.

II. ION-CHANNEL SIGNALS

The ion-channel signals can be generated using a state
model. The number of states and the switching rate parameters
characterize the model. We use the QUB software package to
generate synthetic ion-channel signals [8]. It allows the gener-
ation of signals with custom state models and multiple active
channels. Two signals with a single channel and different state
models are generated. Figures 1(a) and 1b show the models
used to generate signals in the absence and the presence of an
analyte respectively.

A. Power Spectral Density as Discriminatory Features

Any ion-channel signal x can be considered as a realization
of a stationary Markov process with state transition matrix A
under zero noise conditions [5]. The state transition probabil-
ities are given by pij = Pr(x̃t+1 = g(j)|x̃t = g(i)) where
i ∈ S and j ∈ S. S is the state space and |S| gives the number
of states. pi,j is the (i, j)th entry of A and g(.) is the invertible
map from the state space to random variable x̃t. The stationary
distribution of the process is given by πi = Pr(x̃ = g(i)). The
PSD can be expressed as

F (z) = sTPπUΓ̂(z)U−1s (1)

where UΓU−1 is the eigen decomposition of A with eigen
values {γk}|S|

k=1. s is a vector with elements g(i) and Pπ is
a diagonal matrix with πi as the diagonal elements. Γ̂(z) is
a diagonal matrix with the (i, i)th entry as (1 − γ2

i )/[(z −
γi)(z

−1 − γi)]. Equation (1) shows that the average Power
Spectral Density (PSD) of an ion-channel signal is only
dependent on the eigen decomposition of the state transition
matrix. Hence, the Fourier power spectrum contains sufficient
discriminatory information to classify different ion-channel
signals [5].

The PSD of an ion-channel signals exhibits low-pass char-
acteristics and the corner frequency represents the average
opening time of the channel [9]. The PSD is estimated using
the Welch procedure given in [10]. We denote fs as the
sampling frequency and fc as the frequency where the flat
and sloping portions of the PSD intersect. 1/fc represents the
average opening time of the channel [11]. The DC value of
the PSD is neglected and the PSD is divided into bins spaced
in powers of two. The PSD values in each bin are summed
and finally normalized by the total signal power, which results
in the feature vector. Each bin represents the frequency range
from fs/2

l+1 to fs/2
l and the center frequency of the bin is

given by 3fs/2
l+2, where l = {1, ..., L} is the index of the

bin.

B. Experimental Setup

Ion-channels produced from the outer membrane proteins
of Escherichia coli can be used for analyte detection. These
channels change their stochastic switching behavior in the
presence of antibiotics such as Ampicillin [12].

The lipid bilayers were formed across apertures in silicon
chips. These apertures were formed using photo-lithography
and dry reactive ion etching. The channels have to be embed-
ded in a lipid bilayer membrane as the membrane itself does
not allow ions to penetrate. Details of the micro-fabrication
process have been described in [13]. Samples were mounted in
a custom-designed acrylic holder that allows vertical mounting
of four silicon chips, providing free access to both sides of the
individual chips. Lipid bilayers were formed using the bubble
collapse (painting) method from a mixture of (1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine and 1,2-dioleoyl-sn-glycero-
3-phosphocholine) (DOPE:DOPC, 4:1) lipids, dissolved in n-
decane (10 mg/ml). OmpF ion-channels were reconstituted
into these membranes by adding 0.5 µl of OmpF stock solution
to the cis compartment. We used four identical chips and
compared the signals of two neighboring wells, one without
Ampicillin added and the other with an Ampicillin concen-
tration of 2.5 µM. The amplified signal was digitized using a
National Instruments PCI-E 6021 DAQ card at a sample rate of
1 kHz. WinEDR [14] was used to acquire the signal as well
as apply the stimulus voltage of 200 mV to the membrane
containing the ion-channels. Figure 3 shows the plot of the
data from two adjoining chambers one containing Ampicillin
and the other acting as the base signal.

III. GENERATING ROBUST PSD FEATURES USING
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Fig. 3. Experimental data obtained from the sensor array with varying
baseline current and noise levels. The x-axis denotes the sample index and
the y-axis the signal amplitude.

MATRIX COMPLETION

In the problem of matrix completion, the missing entries
of a matrix are inferred using a few observed entries, under
some constraints. Assuming the matrix to be completed is of
low rank and the observed entries are sampled from uniformly
random locations in the matrix, exact recovery of the matrix
is possible [7]. We pose the problem of stabilization of PSD
features as a matrix completion problem. Stabilization here
means that we eliminate the outliers in the PSD features make
them robust.

Consider a matrix M ∈ Rn1xn2 with missing entries. The
indices of the observed entries (i, j) ∈ Ω where Ω is a
subset of the cross-product set {1, . . . , n1}×{1, . . . , n2}. The
sampling operator PΩ applied to a matrix Y ∈ Rn1×n2 is
given by

[PΩ(Y)]i,j =

{
Yi,j (i, j) ∈ Ω

0 otherwise

}
(2)

A unique low rank matrix Y consistent with the observed
entries of M exists when the singular vectors of the latter
matrix obeys certain conditions. Such a matrix Y can be
obtained by solving the following optimization problem.

minimize rank(Y)

subject to PΩ(Y) = PΩ(M) (3)

The conditions on the singular vectors of M are expressed as

∥uk∥l∞ ≤
√
µB/n1, ∥vk∥l∞ ≤

√
µB/n2 (4)

where k ∈ [r], r is the rank of the matrix M, uk and vk are
singular vectors of matrix M obtained using singular value

decomposition (SVD). When µB is small the singular values
are well spread and are not spiky.

The rank minimization problem in (3) is non-convex and
NP-hard. The rank can be replaced by the nuclear norm
defined as the sum of the singular values of the matrix. It
has been shown that this is the tightest convex relaxation to
the rank minimization problem [7]. The relaxed problem is
given by

minimize ∥X∥∗
subject to PΩ(X) = PΩ(M) (5)

where ∥X∥∗ =
∑

k σk is the nuclear norm of the matrix X.
Let assume the vectors b1,. . . , bN are PSD features of N

consecutive frames of an ion-channel signal. Note that each
element in the feature vector corresponds to average PSD
over a certain bin. These vectors are stacked column wise
into a matrix B. Ideally, this matrix should be low rank as
consecutive frames are realization of the same Markov process
and should have similar feature vectors. In order to identify
the outlier feature samples and correct them, we assume every
bin of the feature vector is a realization of an independent
Gaussian random variable. In other words, each row of the
matrix B contains realizations of a Gaussian random variable.
Due to various types of noise, we may get some outliers in
each bin. The outliers are identified by computing the variance
of the entries in each column of B and identifying the samples
whose values are more than an empirically decided threshold.
We denote this incomplete matrix by M. In cases where
the entire column corresponding to frame has high variance,
the column is removed altogether as this feature vector is
not useful for classification. Furthermore, matrix completion
algorithms cannot handle such scenarios.

Several algorithms have been proposed to solve the matrix
completion problem efficiently. Few of the well known meth-
ods are Singular Value Thresholding (SVT) [15], Augmented
Lagrange Multiplier (ALM) Method [16] and OptSpace [17].
We will now briefly describe the SVT algorithm which we use
in this work. SVT algorithm iterates the following steps till
stopping criterion is achieved.

Yk = Dτ (G
k−1)

Gk = Gk−1 + δPΩ(M−Yk) (6)

where Dτ (.) is the shrinkage operator which retains the
singular values greater than τ of the argument matrix. Thus,
the rank of Dτ (G) is considerably lower than that of matrix
G if many of the singular values of G fall below τ . Further
algorithmic and implementation details of SVT are given in
[15]. The parameters τ and δ were experimentally set to 26
and 1.4 respectively. The stopping criterion was set to 1e−04.

IV. RESULTS

A. Classification

In order to evaluate the performance of the proposed robust
features in ion-channel signal classification, we use the setup
described in [5]. The signals generated using the models
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Fig. 4. Robust PSD features. (a)-(c) are the original PSD features for three segments of the data, while (d)-(f) are the corresponding stabilized PSD features.
The x-axis denotes the frequency bins and y-axis shows the average power spectral density.

shown in Fig. 1, in the presence and the absence of the
analyte, are divided into segments of 16, 384 samples. The
dataset was randomly permuted to obtain a training set with
30 vectors and a test set with 30 vectors for each ion-channel.
The Fourier domain PSD features and the proposed robust
features are extracted and presented to a linear SVM for
classification. Note that, the signals are denoised [5] prior to
extracting the features. Table I shows the classification rates
obtained with the original PSD features and the robust PSD
features. Sensitivity and specificity measure the proportion of
the correctly identified positives and negatives respectively. It
can be clearly observed that the post processing of the PSD
features leads to improved classification rates.

B. Analyte Detection

The classification setup described in the previous section
cannot be directly used for analyte detection. The number
of channels inserted in the lipid bilayer varies between ex-
periments and training a classifier for all the possible cases
is not possible. To overcome this problem, we proposed to
use an array of ion-channel sensors [6] and detect the analyte
(Ampicillin) by tracking the relative changes in PSD features
among the sensors.

In the four chamber ion-channel sensor array described in
Section II-B, each chamber holds an ion-channel sensor. Three
of the chambers act as the base signals and the other chamber
is used as the test signal in which the analyte is introduced.
The change in the signal generated in the test chamber can
be attributed to: (a) the change in the number of channels
inserted in the lipid bilayer and (b) the change in the driving
state model due to the presence of an analyte. Support Vector

TABLE I
CLASSIFICATION PERFORMANCE USING THE ORIGINAL AND STABILIZED

PSD FEATURES FOR QUB SIGNALS(LINEAR KERNEL).

Transform % % %
Domain Classification Sensitivity Specificity
Original 92.1 91.4 92.8

Stabilized 96.6 98.2 95.1

TABLE II
FALSE HITS PERCENTAGE IN DETECTION

Features Percentage
Original 13.33

Stabilized 1.67

Regression (SVR) is used to estimate the number of channels
inserted. Similar to the procedure in [6], the robust PSD
features are normalized using the estimate of the number of
channels. The PSD features are compared across all chambers
using a weighted Euclidean distance (WED) measure. A larger
distance measure indicates the presence of the analyte.

Similar to the classification setup, we extract both PSD
features and the robust features from each of the signal
segments. A detection hit is defined as the case when the
WED goes above an empirically obtained threshold. A signal
segment corrupted with noise can produce a high WED even
when the analyte is absent. Such cases are referred to as false
hits. Table II shows the percentage of false hits obtained using
the original PSD features and the stabilized features.



V. CONCLUSIONS

We proposed a method to stabilize the PSD features for
ion-channels using matrix completion. The performance of the
robust PSD features were tested in a classification setup and a
regression based analyte detection framework. The proposed
features achieved better classification rates on the synthetic
two class QUB data. These features were also used to analyze
the signals obtained from the four chamber ion-channel sensor
array device and detect Amplicillin. Lower false detection rates
were observed in the case of the stabilized PSD features.
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