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Abstract.   The use of engineered nanopores  as sensing elements for 
chemical  and  biological  agents  is  a  rapidly  developing  area.  The 
distinct  signatures  of  nanopore-nanoparticle  lend  themselves  to 
statistical analysis. As a result, processing of signals from these sensors 
is gaining importance, but this field is relatively less developed. In this 
paper  we  demonstrate  a  neural  network  approach  to  classify  and 
interpret nanopore and ion-channel signals. 
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Introduction

Resistive pulse sensing or Coulter counting [1] is a wide research area centered on 
nanopores. Though originally developed for counting particles suspended in a fluid 
using  micrometer  sized  pores,  Coulter  counting  has  recently  been  applied  at  the 
nanoscale level [2]. Through the reduction of device aperture size to the nanometer 
range, Coulter counting experiments of small particles such as DNA molecules [3, 4] 
and bovine serum albumin (BSA) [5] through solid state  devices  as well  as  virus 
particles [6] and DNA [7] through polymer materials have been demonstrated. 

In the Coulter counting experiments, individual molecules are constrained to pass 
through a small constrained electric path in a suspending fluid as shown in Fig.1 (left 
panel). As the molecule passes through the orifice, it causes an increase in resistance 
which leads to a drop in the current as shown in Fig.1 (right panel). By observing the 
curvature of these spikes, the size, type and the concentration of the particles can be 
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Fig. 1. Graphical Rendering of the Coulter counter (Reproduced from [8].)

determined [8, 9].
Ion channel proteins are naturally occurring nanopores that mediate the flow of ions 

and molecules across membranes. The utility of ion channels for stochastic sensing 
has been pioneered by Bayley and several of his collaborators [10].  Ion-channels can 
be engineered to act as biosensors that can detect metal ions and organic molecules 
such  as  proteins  [10-12].  Potential  applications  of  ion-channel  sensing  include 
detection  of  reactive  molecules  in  pharmaceutical  products,  chemical  weapons, 
pesticides and foodstuffs [13]. 

An example of an engineered pore is shown in Fig. 2.  An applied potential to the 
pore creates a small current flow. A binding site for an analyte is engineered into each 
pore.  An analyte  binding event to the pore causes  the current  to be modulated as 
shown in the trace below the figure.  The signature of the signal through the pore is 
generally different for distinct analytes.  The frequency of occurrence of the binding 
events was shown to correlate with the concentration of the analyte while parameters 
of the current, such as the mean duration and amplitude correlate with the type of the 
analyte. Features of interest fall into two categories: switching and non-switching [12-
14], both of which contain information that may be important in detecting an agent.

The conventional modeling procedures used to classify the ion-channel signals are 
dwell-time analysis [15-17] and Hidden Markov Models (HMMs) [18-21].  Feature 
extraction for ion-channel signals have been explored in [22, 23]. In this paper, we 
present  a  Wavelet  based  approach  for  denoising  both  nanopore  and  ion-channel 
signals.  A 2 step feature extraction process using Walsh Transforms and Principal 
Component  Analysis  (PCA)  is  used  for  ion-channel  signals.  Robust  analyte 
classification is carried out for both cases using Support Vector Machines (SVMs).

Fig. 2. Engineered Pore. (Reproduced from [8].)
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Data Processing for Nanopore Signals

Data Generation

Nanopore  data  was  generated  using  a  Coulter  counting  element  which  was 
constructed using a Teflon chamber with two baths surrounding the nanopore. The 
two baths were filled with 0.1M KCl electrolyte solution. The nanopore used for the 
Coulter counting experiments was patterned to a diameter of 300nm but the measured 
diameter was 212 nm. The recordings were taken using the Axopatch 200B. Voltage 
traces were incremented from 0-200 mV in steps of 20 mV and each trace lasted 1s. 
The input signal was filtered with a 5 kHz low pass filter before the A/D conversion 
stage. The sampling rate was 50 kHz.  

Wavelet Transform Based Signal Denoising

In the Coulter counting experiment considered in this paper, the baseline current is at 
the pA level.  Due to the low signal-to-noise (SNR) ratio, the signal peaks, which 
indicate  the  transition  events,  can  be  easily  corrupted.  This  creates  difficulties  in 
measurement of peak parameters such as peak height, width and shape. Hence signal 
denoising is essential to improve the sensitivity and accuracy of the Coulter counters.

Wavelet based denoising techniques for Coulter counting experiments have been 
discussed  in  [24].  Denoising  using  the  Discrete  Wavelet  Transform  (DWT)  is  a 
nonlinear operation and involves the following steps:

• Perform a suitable wavelet transform of the noisy data to produce the (noisy) 
wavelet coefficients.

• Select an appropriate threshold depending on the noise variance and perform 
a thresholding operation of the wavelet coefficients to remove the noise. 

• Zero-pad  the  signal  appropriately  and  perform  the  inverse  DWT  on  the 
thresholded coefficients obtained from the previous step to obtain the signal 
estimate.

 While traditional linear filtering techniques trade off noise suppression against a 
broadening of signal features, denoising using the DWT preserves the sharpness of 
features in the original signal. The type of wavelet function, the threshold limits and 
the level of decomposition is determined on a case by case basis. In our simulations, 
we determined  using  cross-validation  that  the  biorthogonal  wavelet  gave  the  best 
performance. To capture most of the features in the signal, the level of decomposition 
was chosen to be 3. Fig. 3 shows the reproduced signal for a sample frame.

Feature Extraction: Baseline Current, Peak Height and Peak Width 

The useful features to be extracted from the nanopore signals are the baseline current, 
peak height and peak width. The combination of baseline current and height of the 
peak indicates whether bead has passed through the nanopore completely or not. The 
peak amplitude is proportional to the baseline current-i.e. greater the baseline current 
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Fig. 3. Nanopore signal Denoising using the Discrete Wavelet Transform (DWT).
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Fig. 4. Signal Denoising using the Discrete Wavelet Transform (DWT).

I, greater will be the drop in current ΔI for beads of the same diameter [9]. The width 
of the peak is proportional to the diameter of the bead [9]. Fig. 4 shows a sample 
event,  where  the  bead  collided  with  the  pore  but  bounced  back  (A)  and  a  few 
milliseconds later passed through the pore (B).

Event Classification Using Neural Networks 

Support vector machines (SVMs) are widely used for solving binary classification 
problems  [25].  SVMs  are  decision  machines  that  rely  on  transforming  lower-
dimensional data into higher dimensional patterns, so that data from two categories 
can always be separated by a hyperplane, in accordance with Cover's Theorem [26].

The SVM uses  the concept  of  the margin,  which  is  defined  to  be the smallest 
distance between the decision boundary and any of the samples [27]. The support 
vectors are the training samples that are closest to the decision boundary and thus 
define the optimal separating hyperplane.  In  support  vector  machines  the decision 
boundary is chosen to be the one for which the margin is maximized. It can be shown 
that the larger margin minimizes the total generalization error [26]. The choice of the 
nonlinear  function that  maps the  input  into a  higher-dimensional  space  is  usually 
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dependent on the problem domain. Usually polynomial or radial basis functions are 
used to perform the mapping.

Experimental data for eight different bias voltages, ranging from 0-200mV, with 
40,512 samples at each bias voltage are available. A rectangular window of size 1000 
samples with no overlap was used to segment the data. In each segment, peaks were 
extracted using a gradient method. Each peak was labeled either as an event or a non-
event.  An  event  indicates  that  a  bead  passed  through  the  nanopore  completely 
whereas a non-event indicates whether:

(i) a bead bounced back instead of passing through the nanopore or
(ii) a spike due to noise. 
In the given dataset, 3979 peaks were extracted from the signals, out of which 75 

peaks  indicated  events.  Peak  width,  mean  baseline  current  and  drop  in  current 
amplitude were chosen as features.  The dataset  was partitioned into a  training set 
(containing 34 events and 1923 non-events) and a test set (containing 41 events and 
2056 non-events).

Data Processing for Ion-Channel  Signals

Data Generation

Multiple recordings of OmpF ion channels of E. coli in a lipid bilayer across a 50μm 
wide pore in silicon, sandwiched between reservoirs containing bathed in a 1M KCl 
solution are used for generating experimental data.  Each recording is generated using 
a sampling rate of 10 kHz for 4 seconds and an applied voltage of 200 mV. The 
current  amplifier  employed  was a  HEKA EPC-8, operating at  a  gain of 1mV/pA, 
using a resistive feedback headstage. The input signal was filtered using an 8-pole 
Bessel  filter  with  a  corner  frequency  of  1kHz  before  the  A/D  conversion.  The 
command voltage was generated by a National Instruments 6251 DAQ board.  

As shown in Fig. 5, we demonstrate that the Discrete Wavelet Transform can be 
used for denoising ion-channel signals also using the same technique discussed in Sec 
2.2. The Haar wavelet, with the level of decomposition set to 8, was found to give the 
best performance.

Since experimental data for two-analyte simulations are not yet available, we have 
used the QUB scientific package to generate synthetic data [28]. Fig. 6 (left panel) 
shows a sample 4-state Markov model used for generating data and a sample trace is 
shown in Fig. 6 (right panel). We constructed models to simulate responses of two 
highly similar analytes which closely resemble the authentic data. Utilizing multiple 
recordings, an input data matrix of dimension 400×10000 is formed by extracting four 
10,000 point sequences of one second duration from each recording for a total of 50 
input files for each analyte.
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Fig. 5. Top panel: Current Recording for the OmpF ion channel in a membrane across a 50μm wide pore, 
bathed in 1M KCL solution.  Bottom panel: Ion-channel Signal denoising using the Discrete Wavelet 
Transform (DWT).

Fig. 6. Left Panel: Basic two class, four state model used by QUB to simulate two analyte ion channel. 
Right: 8000 ms simulation using QUB.

Feature Extraction using Principal Component Analysis

Signals are often processed in the transform domain as they offer attractive benefits 
like  compactness,  reduction  in  computational  complexity  and  robustness  to  noise. 
Feature  extraction  from  ion-channel  sensor  signals  using  the  Walsh-Hadamard 
Transform (WHT) has been described in [22]. The WHT is able to represent signals 
with  sharp  discontinuities  more  accurately  using  fewer  coefficients.  For  a  given 
window size N, it was determined that 20% of the WHT coefficients represents 90% 
of  the  signal  energy.  Thus  by  discarding  the  coefficients  that  do  not  contribute 
significantly to the signal energy, the size of the dataset was reduced by 80%.

Even after WHT is performed, further dimensionality reduction is required on the 
dataset. For example,  N=4096, the size of the transformed dataset is 400×819. It  is 
likely that many of the selected coefficients are highly correlated and there is scope 
for further compaction. 
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Principal  components  analysis  (PCA)  is  a  commonly  used  linear  technique  for 
dimensionality reduction. It  performs a linear mapping of multidimensional data to a 
lower dimensional space while retaining as much as possible of the data variability.  It 
was  determined  that  that  the  first  10  components  account  for  99%  of  the  total 
variance.  Thus  we  project  the  data  on  the  bases  represented  by  the  10  principal 
components.  Now the dimension of the dataset  is  400×10. This dataset  is used as 
input to the pattern classification algorithms.

Analyte Classification

Since we are dealing with a binary classification problem, support vector machines 
(SVMs) were used in this case also. As mentioned earlier, the dataset consists of 400 
vectors. The transformed dataset is randomly permuted and partitioned into a training 
set of 200 vectors and test set of 200 vectors. To compensate for the small size of the 
dataset, m-fold cross-validation was used for model selection [29].

Classification Results 

All simulations were run on MATLAB version 7.5. The Spider toolbox [30] was used 
for classification using SVMs.

Nanopore Signals

The  classification  performance  using  SVMs  are  shown  in  Table  1.  The  best 
performance was obtained using RBF kernels  using a kernel  width of  5.   All  the 
events were captured correctly and only one non-event was wrongly labeled as an 
event. The best performance using a polynomial kernel function (of order 5) is also 
given below.

Table 1. Classification Performance on the Test Set

Kernel Used Classification 
Performance (%)

RBF 97.56
Polynomial 95.13

Ion-Channel Signals 

The goal of the SVM is to classify input data as quickly as possible and therefore a 
smaller  window length  would be  preferable.   However,  there  has  to  be sufficient 
transition data contained in the input window in order to be able to characterize the 
signal.  For this reason, for each scenario, three different window lengths,  N=4096, 
2048 and 1024, were considered. The results of our simulations are shown in Table 2. 
Polynomial kernels (of order 8) and RBF kernels (of width 6) were found to yield the 
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best results.
Our results indicate that as the window length decreases, the error rate increases for 

all classifiers. This is due to the fact that not only are less coefficient values being 
used to characterize the signal, but fewer binding events are occurring giving rise to 
the  possibility  that  there  is  not  enough  signal  data  contained  in  the  windowed 
segment. 

Table 2. Classification Performance on the Test Set.

Algorithm 
Used

Classification Performance (%)
N=1024 N=2048 N=4096

RBF 69.0 74.5  80.5
Polynomial 66.5 72.5 80.0

Conclusions

Denoising signals using DWT was demonstrated for nanopore signals. Three features 
extracted from the peaks that occur in the signal- peak width, peak amplitude and 
mean baseline current were used to detect the passage of a bead through the nanopore. 
Classification was carried out using SVMs with 96% accuracy.

Denoising using DWT was demonstrated for experimental data. Feature extraction 
and pattern classification for discriminating between two highly similar analytes was 
carried out for ion-channel signals. Two-stage feature extraction using WHT and PCA 
provided  feature  vectors  that  could  be  used  for  classification  using  the  four 
algorithms.  Classification  accuracy  is  at  the  80th  percentile  for  a  frame  length, 
N=4096. We plan to improve the accuracy of the classifiers using real data generated 
from experiments.
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