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ABSTRACT
Ion-channel  sensors  can  be  used  for  detection  of 
biochemical  reagents.  A  silicon-based  ion-channel 
platform has  been  developed  for  stochastic  sensing  for 
molecules. In this paper, we present techniques to extract 
appropriate features from sensor data using a combination 
Walsh-Hadamard  Transform  and  Principal  Component 
Analysis  and  use  neural  network  techniques  to 
discriminate between the analytes.
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1.  Introduction

Ion-channels can be engineered to act as biosensors that 
can  detect  metal  ions  and  organic  molecules  such  as 
proteins [1,2,3].  Sensing is  based on the modulation of 
single-channel current  by molecules that bind reversibly 
to the pore of the channel  [1].  The current  fluctuations 
generated by the binding event are different for different 
analytes.  Potential  applications  of  ion-channel  sensing 
include detection of reactive molecules in pharmaceutical 
products,  chemical  weapons,  pesticides  and  foodstuffs 
[4].

A simple case of the engineered pore is shown in Fig. 
1.  The pore is situated in a planar lipid bilayer,  with a 
permeable  salt  solution  coating  each  side.   An  applied 
potential to the pore creates a current flow. A binding site 
for an analyte is engineered into each pore.   An analyte 
binding  event  to  the  pore  causes  the  current  to  be 
modulated as shown in the trace below the figure.  The 
current  signature  through  the  pore  is  indicative  of  the 
individual  analyte  binding  events.   The  frequency  of 
occurrence  of  the  binding  events  may  reveal  the 
concentration of the analyte while the modulated current 
signature, namely the mean duration and amplitude of the 
modulated  signal,  reveals  the  identity  of  the  analyte. 
Features of interest fall into two categories: switching and 
non-switching components  [3,5],  both of which contain 
information that may be crucial in detecting an agent.

Fig.1. Single Engineered Pore. (Reproduced from [1].)

The engineered protein pores allow for single-molecule 
detection  and  give  rise  to  the  possibility  of  analyte 
classification based on the current signal [2].

The conventional modeling procedure used to classify 
the  signal  is  referred  to  as  dwell-time  analysis.   By 
analyzing  the  time  intervals  of  open  and  closed  states 
from  ion-channel  data,  one  is  able  to  investigate  the 
gating characteristics of the channel [6,7].  By setting a 
threshold value  and determining the dwell  times in  the 
open and closed states, these values can be placed into a 
distribution and a Gaussian PDF can be fitted to the data 
using  the  Expectation-Maximization  (EM)  method  [8]. 
Determination  of  the  type  of  analyte  can  then  be 
performed  by  examining  the  mean  dwell-time  in  the 
closed state, which is taken to be the mean of the fitted 
Gaussian [9].

The difficulty in the conventional  modeling approach 
arises when the signal-to-noise ratios (SNR) are too low. 
The  mean-dwell  time  approach  idealizes  the  data, 
basically separating it into two possible states, based on 
the  threshold  value,  and  analyzes  this  idealized  data. 
However, when the SNR is too low, the inherent noise in 
the signal provides false information and has the potential 
to place the idealized data in the wrong state.  Obviously, 
these  errors  in  the  idealized  data  will  cause  the  mean 
dwell time to be wrong and the analyte to be classified 
incorrectly.

The second and most  recent  modeling approach uses 
Hidden  Markov  Models  (HMM).  The  open-closed 
behavior  of  ion  channels  is  described  in  terms  of 
continuous-time  Markov  models  in  which  model  states 



are taken to correspond to distinct states of binding [10]. 
Finding the best  Markov model involves  two steps:  (a) 
Choosing the general topology of the model by specifying 
the number of states and the allowable transitions among 
states and (b) Optimizing the Markov model parameters. 
HMMs  for  ion-channel  sensing  have  been  further 
explored in [11, 12, 13].

In  this  paper,  we present  an alternative approach  for 
classification  which  involves  feature  extraction  using 
Walsh  Transforms  and  Principal  Component  Analysis 
(PCA)  and  robust  analyte  classification  using  neural 
networks.

2. Feature Selection

Feature  selection  is  the  process  of  identifying  relevant 
features from the original  dataset  to arrive at a reduced 
dimensionality  representation.  By using  only the  set  of 
features  instead  of  the  raw  data,  the  accuracy  of  the 
classification system can be improved and its complexity 
and training time is reduced. Here we present a two-stage 
feature  extraction/dimensionality  reduction  approach-the 
Walsh-Hadamard  Transform (WHT) in  used  in  stage  1 
and Principal Component Analysis (PCA) in stage 2. The 
proposed approach is shown in Fig. 2.

The  use  of  Walsh-Hadamard  Transform  (WHT)  for 
feature compaction of ion-channel sensor signals has been 
described in [14].The input signal is divided into frames 
of length  N and transformed using the WHT. A certain 
number  of  the  Walsh-Hadamard  transform  coefficients 
are selected and are input to stage 2.

We use Principal Component Analysis (PCA) to carry 
out further dimensionality reduction in stage 2. PCA is an 
orthogonal projection of data from a higher dimensional 
space to a lower dimensional one such that the variance of 
the projected data is maximized [14].

PCA can be carried out using the following steps:
1)  Determine the Covariance matrix of the dataset
2)  Determine  its  eigenvectors  and  eigenvalues  and sort 
them in descending order of eigenvalues.
3)  Select  M eigenvectors  corresponding  to  the  first  M 
eigenvalues.

Fig.2. Feature Extraction and Pattern Classification Process

The  selected  eigenvectors  form  the  M  principal 
components. The value M is chosen to be the number of 

eigenvectors adding up to T % of the total variance of the 
signal where T is a pre-determined threshold.

The data is projected onto the M principal components 
and  the  projected  data  is  used  as  inputs  to  the 
classification stage. 

3. Analyte Classification

The  following  algorithms  [14,15,16]  are  popular  in 
special  applications  and  can  be  used  for  signal 
classification from sensors[17]:

A. Multi-Layer Perceptron (MLP)
MLP is  a  supervised  learning  approach  and  is  also the 
simplest  type  of  Artificial  Neural  Network  (ANN)  for 
pattern  classification.  The  output  of  the  MLP  y is 
expressed  as  a  weighed  sum  of  the  inputs  xi passed 
through a nonlinearity T.

   )( ii xwTy ∑=                                          (1)

The MLP learns the boundaries of non-linearly separable 
regions by minimizing a cost function (usually the mean-
squared  error  between  input  and  output).  This  is  done 
using  a  gradient-descent  algorithm.  The  output  is 
modified at each iteration by adjusting the weights  wi of 
the network.

B. Linear/Quadratic Discriminant Analysis (LDA/QDA)
The aim of LDA is to find a projection that  minimizes 
distances  within  classes  and  maximizes  the  distances 
between classes, i.e., it seeks to maximizes the ratio of Sb 

to  Sw. where  Sb represents  the  between-group  variances 
and Sw represents the within- group variances.
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C. Radial Basis Function (RBF) Network
The RBF Network  is  similar  to  an  MLP except  that  it 
always has only 2 layers: a non-linear hidden layer and a 
linear output layer.
The  hidden  layer  is  made  up  of  radial  basis  activation 
functions (usually Gaussian functions). The centers of the 
functions are selected randomly from the training data and 
the widths are proportional  to the distance  between the 
centers.
The weights of the output layer  are arrived at using the 
equation

bGW +=                                                            (4)
G+ is the pseudo-inverse matrix of the RBF and  b is the 
desired output.
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D. Support Vector Machine (SVM)
An SVM performs  classification  by constructing an N-
dimensional hyperplane that optimally separates the data 
into two categories.  They are  optimal  in  the  sense that 
they maximize the separation between the classes hence 
they  are  known  as  maximum  margin  classifiers.  The 
vectors that constrain the width of the margin between are 
the  support  vectors  (they  are  encircled  in  the  figure 
below).An  SVM handles  non-linearly  separable  signals 
by  using  kernel  functions  (E.g.  Gaussian,  polynomial, 
sigmoid) to map the data into higher  dimensions where 
they can be separated by constructing an N-dimensional 
hyperplane  that  optimally  separates  the  data  into  two 
categories.

4.  Simulations and Results

Synthetic data was generated using the QUB scientific 
package [18]. QUB constructs Markov models to simulate 
single-channel  kinetics.  Fig.  3  shows  a  sample  4-state 
Markov  model  used  for  generating  data.  We  construct 
models to simulate two analytes which are highly similar. 
For each model, 200 segments were created at a sampling 
rate  of  10  kHz  for  a  1s  duration.  Thus,  each  segment 
consists of 10,000 data points for a particular model. The 
input data matrix is of dimension 400×10000.

Fig.  3.   Basic  two class,  four  state  model  used by QUB to  simulate 
single molecule ion channel.

The goal  of  the  network  is  to  classify  input  data  as 
quickly  as  possible  and  thus  a  smaller  window  length 
would be preferable.  However, there has to be sufficient 
transition data contained in the input window in order to 
be able to characterize  the signal.   For  this reason,  for 
each  scenario,  three  different  window  lengths  were 
considered,  based on the number of input data samples 
N=4096,  2048  and  1024.   Based  on  initial  test  data, 
feature  extraction  using the  Walsh-Hadamard  transform 
(WHT)  required  approximately  20%  of  the  highest 
coefficient  values  in  order  to  retain  90% of  the  signal 
energy.  Thus, for each window length, the highest 20% 
of the transform coefficient  values  were  retained.  After 
applying  WHT the  transformed  matrix  is  of  size  400× 
(0.2×round (10000/N))

To further reduce the dimensionality PCA is performed 

on the constrained WHT dataset. It can be observed from 
Fig.  4 that that the first 3 components account for over 
97% of the total variance. Thus, we project the data on the 
axes  represented  by the 10 principal  components.  Now 
the dataset dimension is 400×10. This dataset is used as 
input  to  the  pattern  classification  algorithms  described 
earlier.
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Fig.4. Distribution of Variance among the 819 eigenvalues (50 shown) 

The  transformed  dataset  is  randomly  permuted  and 
partitioned into a training set of 200 vectors and test set of 
200  vectors.  We  assign  target  classes  to  each  of  the 
vectors.  The  classification  algorithms  are  trained  using 
only the training set and performance is evaluated using 
the  test  set.  Leave-n out  procedure  and  m-fold  cross-
validation were used for model selection [16].

The results of our simulations are shown in Table 1.

TABLE I. CLASSIFICATION PERFORMANCE

Algorithm 
Used

Classification Performance (%)
N=1024 N=2048 N=4096

MLP 71.0 73.0  81.5
LDA/QDA 64.1 72 78.0
RBF 67.0 71.5 76.5
SVM 64.1 71.25 78.0

  Our  results  indicate  that  as  the  window  length 
decreases, the error rate increases for all classifiers. This 
is due to the fact that not only are less coefficient values 
being used to characterize the signal,  but fewer binding 
events  are  occurring  giving  rise  to  the  possibility  that 
there is not enough signal data contained in the windowed 
segment. MLPs gave the best performance for all frame 
lengths.

5.  Conclusion

Feature  extraction  and  pattern  classification  for 
discriminating between two highly similar  analytes  was 
carried out. Two-stage feature extraction using WHT and 
PCA  provided  feature  vectors  that  could  be  used  for 
classification  using  the  four  algorithms.  Classification 
accuracy  is  at  the  80th percentile  for  a  frame  length 
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N=4096.  We  plan  to  improve  the  accuracy  of  the 
classifiers using real data generated from experiments.
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