#### Sparse Models in Image Understanding And Computer Vision

Jayaraman J. Thiagarajan Arizona State University

#### Collaborators

Prof. Andreas Spanias Karthikeyan Natesan Ramamurthy

# Sparsity

- Sparsity of a vector means that only a small number of its elements differ significantly from zero.
  - Modeling natural signals [Elad2010].
  - Supervised classification [Figueiredo 2003].
  - Understanding natural image statistics [Olshausen & Field 1996].
- Object recognition in the "cortex" [Mutch and Lowe 2008], [Riesenhuber and Poggio 2005]
  - Sparse, localized features
  - Hierarchical approach Simple low-level features having are pooled and combined into complex, higher-level features.

Sparse methods lead to parsimonious (and interpretable) models in addition to being efficient for large scale learning.

# Sparse Coding

Solve an underdetermined (overcomplete) system of equations



 Algorithms - Matching Pursuit, Orthogonal Matching Pursuit, Iterated shrinkage, LARS, Feature sign search and many others.

# Dictionary Design

- The dictionary  $\Psi$  can be constructed as a
  - Pre-defined set of basis functions
  - Union of orthonormal bases
  - Overcomplete set of features adapted to the data
- Algorithms Conjugate gradient descent based methods, K-SVD, FOCUSS, MOD and many others...
- Adapting dictionaries to the training data Generalization of data clustering [Thiagarajan et.al. 2010]
  - A data sample can be associated to more than one cluster and an activation value is computed for each cluster.
  - K-lines clustering Special case of K-subspace clustering with K = I and the additional constraint that the subspace passes through origin.

# Learning Global Dictionaries

- Training a dictionary for every new set of training samples is not feasible.
- A learning algorithm is a map from the space of training samples to the hypothesis space of functional solutions.
- Can the learning algorithm recover the underlying global dictionary "stably"?
  - A stable algorithm will depend only on the probability space to which the training samples belong.
- Given that the training error is small, can we ensure that the "Expected" test error is also small?
  - Need to obtain an upper bound for the difference between the empirical and expected errors.

# **Designing Global Dictionaries**

- Natural image patches exhibit redundancy and hence can be efficiently coded.
- Image patches contain either low dimensional geometric patterns or stochastic textures, or a combination of both.
  - Energy hierarchy in the patterns can be exploited.



Multilevel Dictionary Learning

# An Example Dictionary

LEVEL 9

LEVEL 10

LEVEL 11

 Geometric patterns in the first few levels and stochastic patterns in the last few levels.



LEVEL 13

LEVEL 14

LEVEL 15

LEVEL 16

LEVEL 12

# **Compressed Sensing**

- Recovery of images using compressed measurements
- Measurement system: Random (or) Optimized to the dictionary.



#### **KSVD (PSNR = 30.45 dB)**



#### Proposed (PSNR = 32.58 dB)



Using 25% Noisy Measurements

# Sparse Coding in Recognition

#### Challenges:

- No single descriptor can describe the whole dataset.
- Diverse nature and high dimensionality of the descriptors vectors, histograms, matrices and tensors.

#### Proposed solution:

- Employ kernel methods to learn models using the similarities between data samples.
- Perform sparse coding in the feature space obtained by fusing multiple kernels (MKSR).
- Low-dimensional compact representation for recognition.
- Learning dictionaries in the ensemble feature space.

#### Multiple Kernel Sparse Representations

Approach I



- Learn a separate dictionary for each descriptor and obtain ensemble kernel matrices for sparse coding.
- Complexity: O(MK).

#### Multiple Kernel Sparse Representations

Approach 2



- Perform kernel dictionary learning using the ensemble kernel matrix directly.
- Complexity: O(MN).

#### **Object Recognition Performance**

- Caltech-101/Caltech-256 Object Datasets
  - SIFT, Self similarity, LBP, Gist, PHOG, Geometric Blur, C2-SWP, C2-ML.
  - Linear SVM for classifying the MKSR codes.



## **Object Recognition Performance**

| Algorithm                       | 5     | 10    | 15    | 20    | 25    | 30    |
|---------------------------------|-------|-------|-------|-------|-------|-------|
| Spatial Pyramid Matching        | -     | -     | 56.4  | -     | -     | 64.6  |
| Sparse Coding + SPM             | -     | -     | 67    | -     | -     | 73.2  |
| LLC + SPM                       | 51.15 | 59.77 | 65.43 | 67.74 | 70.16 | 73.44 |
| LC-KSVD                         | 54    | 63.I  | 67.7  | 70.5  | 72.3  | 73.6  |
| Multiple Kernel SC (Approach I) | 56.34 | 64.8I | 68.56 | 71.4  | 73.07 | 74.29 |
| Multiple Kernel SC (Approach 2) | 56.9  | 65.3  | 68.94 | 71.83 | 73.61 | 74.88 |

| Algorithm                       | 15    | 30    | 45    | 60    |
|---------------------------------|-------|-------|-------|-------|
| Sparse Coding + SPM             | 27.73 | 34.02 | 37.46 | 40.14 |
| LLC + SPM                       | 34.46 | 41.19 | 45.91 | 47.68 |
| Multiple Kernel SC (Approach I) | 36.46 | 43.12 | 46.24 | 48.26 |
| Multiple Kernel SC (Approach 2) | 37.19 | 43.81 | 46.92 | 48.87 |

## **Tumor Segmentation**

- Robust method to automatically segment a medical image into its constituent heterogeneous regions.
  - Active and necrotic tumor components from TI-weighted contrast enhanced MR images.

#### Challenges:

- Variability in size, shape and location.
- Similarity in intensities of normal and abnormal brain tissue regions.
- Intensity variations of identical tissues across volumes.
- Avoid overestimation.



## Kernel Coding for Segmentation

- Sparse coding typically applied to image patches (or) feature vectors.
  - > Trivial to obtain sparse codes for pixel intensities.
  - Proposed solution: Perform coding using kernel similarities.



## **Tumor Identification**

- Need to identify locally connected segments
  - Segmentation algorithms typically consider pixel locations in addition to intensities.
- Incorporation of locality information
  - Approach I: Perform spectral clustering only on the pixels determined as tumor based on kernel codes.
  - Approach 2: Include the locality information as part of the kernel
- Ensemble kernel can be constructed as the Hadamard product of intensity and locality kernels.
  - Tumor region can be identified using linear SVM.
- Complexity reduction can be achieved by allowing user to initialize the tumor region.

### **Experiment Results**



### **Experiment Results**

| Image    | Acc (%) | CR   | Acc (%) | CR   |
|----------|---------|------|---------|------|
| Slice I  | 93      | 0.9  | 94      | 0.93 |
| Slice 2  | 96      | 0.95 | 97      | 0.95 |
| Slice 3  | 92      | 0.9  | 95      | 0.94 |
| Slice 4  | 90      | 0.86 | 90      | 0.86 |
| Slice 5  | 94      | 0.85 | 94      | 0.87 |
| Slice 6  | 92      | 0.82 | 92      | 0.81 |
| Slice 7  | 94      | 0.76 | 95      | 0.72 |
| Slice 8  | 98      | 0.95 | 98      | 0.95 |
| Slice 9  | 98      | 0.92 | 98      | 0.92 |
| Slice 10 | 92      | 0.81 | 92      | 0.84 |

#### Image Retrieval

- Local descriptors from small patches Object recognition.
- For general image retrieval tasks Typical to consider a heterogeneous combination of multiple features.
- Assumption: Well annotated tags available for a sample set.
- Is it possible to use this supervised information in coding?



#### Locality in Sparse Models

- Moving away from VQ Relative importance of the different bases are not considered.
- Sparse Coding Lesser reconstruction error, but loses correlation between the codes.
- Consistency Similar features must have similar codes.
- Salient patterns in the neighborhood Local linear model.
- By adding a suitable regularization for locality, sparse coding can provide improved recognition performance.

$$\min_{\mathbf{x}} \sum_{k=1}^{K} w(k) |x_k| \text{ subject to } \|\mathbf{y} - \mathbf{\Psi}\mathbf{x}\|_2 \le \epsilon$$

$$w(k) = \|\mathbf{y} - \boldsymbol{\psi}_k\|_2^2 \qquad w(k) = \|\mathbf{y} - (\mathbf{y}^T \boldsymbol{\psi}_k) \boldsymbol{\psi}_k\|_2^2$$

## Supervised Coding

- Using heterogeneous features from large regions of an image.
- Provides enough variability to understand the interactions between different entities.
- Learning a dictionary for sparse coding these features Bag of Visual Phrases.
- Can be further improved by performing supervised coding
  - > Simultaneous sparse coding of features within a group (tag/label).

$$\hat{\mathbf{X}}^{(g)} = \min_{\mathbf{X}} \|\mathbf{Y}^{(g)} - \boldsymbol{\Psi} \mathbf{W}_{(g)}^{-1} \mathbf{X}\|_{F}^{2} \text{ s.t. } \|\mathbf{X}\|_{row-0} \le L$$

- One image can be part of several groups.
- Design dictionaries to "optimize" this representation.

# Algorithm



#### Simulations



0.9

#### **Other Research Problems**

- Sparse coding on Riemannian manifolds for activity recognition
- Dictionary Learning with graph embedding constraints
- Discriminative clustering in ambient and feature spaces
- Combined sparse representations
  - Derived conditions for unique recovery using convex and greedy methods.
- Wavelet domain statistical models for template learning
  - Fast image registration using non-stationary GMRF templates.
- Example based coding for Image recovery
- Shift-invariant sparse representations
- Transform domain features for ion-channel signal classification

#### References

- M. Figueiredo., "Adaptive sparseness for supervised learning," IEEE PAMI, 25(9):1150–1159, September 2003.
- [2] B. Olshausen and D. Field. "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, 381:607–609, 1996
- [3] M. Riesenhuber and T. Poggio, "Hierarchical models of object recognition in cortex.," Nature Neuroscience, 2(11):1019–1025, 1999.
- [4] J J. Mutch and D. G. Lowe, "Multiclass object recognition with sparse, localized features," In CVPR, pages 11–18, New York, June 2006.
- [5] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, 2010.
- [6] Z. He et.al., "K-hyperline clustering learning for sparse component analysis," Signal Processing, vol. 89, pp. 1011-1022, 2009.
- [7] A. Rakhlin and A. Caponnetto, "Stability of K-means clustering," In NIPS, vol. 19. Cambridge, MA: MIT Press, 2007.
- [8] S. Lazebnik et.al., "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," In CVPR, 2006.
- [9] Roberto Rigamonti et.al., "Are Sparse Representations Really Relevant for Image Classification ?," In CVPR 2011.
- [10] D. L. Donoho and M. Elad, "Optimally sparse representation in general (non-orthogonal) dictionaries via II minimization," In PNAS, vol. 100, no. 5, pp. 2197-2202, March 2003.

#### **Selected Publications**

- [1] J. J. Thiagarajan et.al., "Optimality and stability of the K-hyperline clustering algorithm," Pattern Recognition Letters, vol. 32, no. 9, pp. 1299-1304, 2010.
- [2] J. J. Thiagarajan et.al., "Learning stable multilevel dictionaries for sparse representation of images", IEEE PAMI, 2012.
- [3] J. J. Thiagarajan, K. N. Ramamurthy and A. Spanias, "Local sparse coding for image classification and retrieval", Pattern Recognition Letters, 2012.
- [4] J. J. Thiagarajan and A. Spanias, "Multiple kernel sparse representations for object recognition," IEEE Transactions on Image Processing (Under review)
- [5] J. J. Thiagarajan et.al., "Supervised local sparse coding of sub-image features for image retrieval," IEEE ICIP 2012.
- [6] P. Sattigeri et.al., "Implementation of a fast image coding and retrieval system using a GPU", IEEE ESPA, 2012.
- [7] J. J. Thiagarajan and A. Spanias, "Learning dictionaries for local sparse coding in image classification," Asilomar 2011 (Nominated for the Best Student Paper award).
- [8] K. N. Ramamurthy, J. J. Thiagarajan and A. Spanias, "Improved sparse coding using manifold projections," Proc. of IEEE ICIP, 2011.
- [9] J. J. Thiagarajan, et.al., "Multilevel dictionary learning for sparse representation of images," in Proc. of IEEE DSP Workshop, Sedona, 2011 (Nominated for the Best Student Paper award).
- [10] K. N. Ramamurthy et.al., "Fast image registration using non-stationary Gauss Markov random field templates," Proc. of IEEE ICIP, 2009.