
General Information on J-DSP

In this document, we provide a series of computer laboratory exercises for an internet-based
signal-processing laboratory that facilitates hands-on learning experiences. The laboratory is
based on an object-oriented Java tool called Java Digital Signal Processing editor (J-DSP). J-
DSP has been developed at Arizona State University (ASU) and is written as a platform-
independent Java applet that resides either on a server or on a local hard-drive. It is accessible
through the use of a web browser. J-DSP has a rich suite of signal processing functions that
facilitate interactive on-line simulations of modern statistical signal and spectral analysis
algorithms, filter design tools, QMF banks, and state-of-the-art vocoders.

J-DSP provides a user-friendly environment through Java’s graphical capabilities. Its highly
intuitive graphical user interface (GUI) is easy to understand and use. All functions in J-DSP
appear as graphical blocks that are divided into groups according to their functionality. Selecting
and establishing individual blocks can be done by a drag-and-drop-process. Each block is linked
to a signal processing function. The figure below shows the J-DSP editor environment. By
connecting blocks together, a variety of DSP systems can be simulated. Signals at any point of a
simulation can be examined through the appropriate blocks. Blocks can be edited through dialog
windows, allowing the user to change the corresponding function’s parameters to desired values
and/or to view results. Blocks can easily be manipulated (i.e. edit, move, delete and connect)
within the specified drawing area, using the mouse. System execution is dynamic, which means
that any change at any point of a system will automatically take effect in all related blocks. Any
number of block windows can be left open to enable viewing results at more than one point in the
editor.

J-DSP Environment

Lab 1: Working with J-DSP

The easiest way to explain some of the functions of J-DSP is to work through a simple example.
To start J-DSP, go to the link, http://www.eas.asu.edu/~midle/jdsp/, and click on the “Start J-DSP”
link, and press “start" in the subsequent page. It may take 30 seconds to download the program
and a few more seconds to establish the first block but once the first block is established, the
program should run quickly. Adjust the size of the J-DSP editor window so that you are still able
to read this text or make a printout of this page. Press the Sig Gen button on the left part of the
window. Move the mouse to the center of the window and click the left mouse button. You have
created a signal generator block. There are two signal generators, Sig Gen for processing a
single frame of the signal and Sig Gen (L) for frame-by-frame processing which is typically used
in speech applications. Similarly, create a Filter and a Plot block and note that blocks cannot be
placed on top of one another. There are two plot blocks, i.e., Plot (single plot) and Plot2 (two
plots). For now, use Plot.

Note that each block has signal input(s) designated by the little triangle(s) on the left and signal
output(s) to the right. Some blocks carry parameter inputs and outputs at the bottom and top of
the block respectively. For example, the Filter block has a coefficient input on the bottom and a
coefficient output on the top. Parameter inputs facilitate functions like filter design, frequency
response, LPC etc.

http://www.eas.asu.edu/~midle/jdsp/

To select a block, click once to highlight it. You can then move it by placing the mouse arrow over
it, holding down the left mouse button and dragging the box to a new location. To delete a block,
simply select it and press the "delete" key on your keyboard. To link blocks, click once inside the
small triangle on the right side of the signal generator box and while holding the mouse button
down, drag the mouse arrow to the triangle on the left side of the filter box. Release the mouse
button to create a connection between the two boxes. Always make the connections in the
direction of the signal flow. The Coeff. block is used to specify filter coefficients. The block is
connected to the filter’s lower parameter input triangle. Now, connect the Filter block to the Plot
block so that your editor window looks like the block diagram. Note that you can view the dialog
box of each block by double clicking on the block, as shown in the figure below.

Choosing Signals
Let us now form a signal using the signal generator. Double click inside the Sig Gen box and a
dialog window appears. If you do not see a dialog window, you are using an older Internet
browser and must download the newest version of Netscape or Internet Explorer and start over.
Use Internet Explorer 5.5 or later, or Navigator version 4.6 or later, with its Java plug in.

On the right side of the signal generator window, you see a preview of the signal. You may
change the “name” of the signal, the “gain”, the “pulse width”, the “period” and the “time shift” by
typing the desired value into the appropriate box. The signal type can be changed by clicking on
the pop down menu and selecting a signal. If you select a “self-defined signal”, an “edit signal”
button will appear allowing you to edit the signal

With all signals except audio, J-DSP assumes a normalized sampling frequency of 1Hz. Hence
the sampling frequency in terms of radians is 2π. All frequencies are entered as a function of π,
e.g., 0.1π, 0.356π, etc. Any sinusoidal frequency at or above π will result in aliasing.

Step 1.1: Create a sinusoid with “frequency” 0.1π, “amplitude” 3.75, “pulse width” 40. When all
of the parameters have been entered, press the [update] button to update the signal preview and
remember that whenever changes are made to this box, the [update] button must be pressed in
order for the changes to take effect. On the right, you can see a preview of the input signal. Count
the number of samples within a period. How many do you have? (ans: 20 samples).

Step 1.2: Create a sinusoid with “frequency” π, “amplitude” 3.75, “pulse width” 40 (remember to
press update for changes to take place). What happens? (ans: we have aliasing, i.e, no signal).

Step 1.3: Create a sinusoid with “frequency” 1.3π, “amplitude” 3.75, “pulse width” 40. What
happens? Count the number of samples in a period. (ans: we have aliasing again , signal makes
no sense).

Step 2: Next, we want to take a look at the Filter output in the time and frequency domain. Set
the values in Sig Gen as per step 1.1. Double-click the Plot block and a new dialog window will

appear. You should again see the input signal because the filter is just letting the signal pass
through unaffected, as no coefficients have been set. If you press the [Graphs/Values/Stats]
button, a table with the values of the signal pops up. In the first column you see the indices of the
samples and the second column shows you the values. Close the value dialog box.

Step 2.1 Let us now see the filter in action. Keep the Plot window open to observe any changes.
Double click the Coeff. block. You should see the following:

Step 2.2 Keep the values in Sig Gen as per step 1.1. Change the filter coefficient to b0=4 and
press [update]. Double click on the Plot block. You should see that the amplitude of the sinusoid
has changed (ans: peak amplitude 4x3.75= 15).

Step 2.3: Implement a pure delay by setting b5=1 and rest of the coefficients (including b0) to
zero and press [update]. What happens to the sinusoid?

Step 2.4 Implement a simple LPF, set b0 = 0.2 and a1 = -0.8 and press [update]. Generate a
sinusoid with “gain” 1, “frequency” 0.1π, “pulse width” 256. What do you observe?
What kind of signal do you get at the output? Why? What is the peak-to-peak value? Do we have
a change? Is there a phase shift? What filter function determines the time shift?

Step 2.5: Select the Freq-Resp block from the panel of general blocks on the left of the window
and place it to the north of the Filter block. Connect the parameter output to the Freq-Resp
block. Double click the Freq-Resp block. You should see the magnitude and phase response of

the filter. Change the coefficient to a1 = 0.8 instead of a1 = -0.8. What do you see in the frequency
response and output? (ans: HPF, decrease in amplitude)

Step 3: To view the signal in the frequency domain, insert an FFT box between the Filter and
the Plot box as shown below. The FFT box can be found under the Freq. Blocks menu.

Step 3.1 Set the Filter parameters and input as per step 2.4. Double click on the FFT block and
change the “FFT size” to 256 points and then press [Close]. Now, you can see the magnitude
and the phase of the signal in the frequency domain. The magnitude has a sharp peak
approximately at 0.31, the frequency of our sinusoidal signal (0.1x3.1459).

Step 3.2 Change the sinusoidal frequencies as per steps 1.2 and 1.3 but with “pulse width” 256.
What do you observe?

Step 3.3 Delete the filter. Set the sinusoidal “frequency” in Sig Gen as per step 1.1 but with
“pulse width” 256. Now create a second Sig Gen block and a Mixer block, name it ‘Add’. Your
editor window should then look like the following:

Change the name of the second input box to `’Noise’ and the name of the output box to ‘SigNoi’.
The names are restricted to six characters. Following that, we edit the new input box called
‘noise’. Open the dialog window and change the “signal type” to “random”. Choose a “variance”
of 4 and extend the “pulse width” to 256 samples, in order to have noise over the full length of the
signal. Now take a look at the output signal. In the time domain it is very hard to see that a
sinusoid is present. However, if you view the signal in the frequency domain with an FFT of size
of 256, then you still find a peak at approximately 0.31.

Step 3.4: Change the “gain” of the sinusoid up or down and observe the spectra (FFT plot). Try
different values to make the sinusoid to dominate or to be masked by noise.
Remember the “Hunt for the Red October"(a movie about a stealth sub-marine defecting from the
Soviet navy)? Sonar operators were viewing FFT spectra listening to sonar as they were
searching for submarine propeller signatures (sinusoids) in ocean noise (random signal). Stealth
submarines would like their propeller signatures to be buried in (or masked by) ocean noise.

	Choosing Signals

