JDSP in Education

NSF Phase 3 J-DSP Workshop, UCy

Presenter: Mahesh K. Banavar

Collaborators: Andreas Spanias, Sai Zhang, Girish Kalyanasundaram, Deepta Rajan, Paul Curtis, Vitor Weber

SenSIP Center, School of ECEE, Arizona State University

http://jdsp.asu.edu
Agenda

• JDSP-based OFDM for Wireless Communications
• iJDSP – Audio processing
• AJDSP – Sensor Interfaces
• Localization using Android devices

http://jdsp.asu.edu
Orthogonal Frequency Division Multiplexing (OFDM)

- Used mainly in cases of multipath propagation
 - Frequency selectivity
 - Signal spreading
 - Solutions can include lower data rates, equalization, and methods such as CDMA

- OFDM uses the cyclic property of the FFT

- Intuition: OFDM divides a wide-band frequency selective channel into several narrow band frequency flat channels

http://jdsp.asu.edu
Multipath environment – No OFDM

- Transmit a series of pulses
With OFDM

http://jdsp.asu.edu
Educational value

• Demonstrates:
 – Properties of the DFT matrix
 – Cyclic nature of the FFT
 – Random signals (noise)

• Simulations in JDSP can show
 – Effect of channel length
 – Effect of noise

http://jdsp.asu.edu
Block Diagram Based Learning in iJDSP

- Requirements
 - Provision of speech/audio signals
 - Microphone Recording and Playback facility
 - Frame-by-Frame Processing Capability
 - Effective visualization tools

http://jdsp.asu.edu
Blocks for Audio Signal Processing

- Long Signal Generator
- Sound recorder (device microphone)
- Spectrogram
- Linear Predictive Coding (LPC)
- Quantization
- Line Spectral Pairs
- MPEG I Layer 3 Psychoacoustic Model
- Loudness Control

http://jdsp.asu.edu
Educational Value

On an iOS device:

• Visualization of audio in time-frequency domains
• Distinction between loudness and intensity
• Speech models
• Effects of quantization
• MP3 algorithm

http://jdsp.asu.edu
AJDSP

- Android-based DSP simulation program

http://jdsp.asu.edu
AJDSP – Sensor Interfaces

SHIMMER

- GSR
- ECG
- Accelerometer
- Camera
- Microphone

AJDSP

- Statistics
- Graphs
- Audio Feedback

MOBILE DEVICE

http://jdsp.asu.edu
Sensors for Biomedical Applications

• **Camera**
 – Heart Rate estimation by extracting PPG data.

• **Accelerometer**
 – Step counter and estimation of walking, standing and running duration.

• **ECG**
 – Estimating heart rate and extracting features such as R-R interval, HRV, pulse transit time etc.

• **GSR**
 – Extract features such as mean and standard deviation of skin conductance level (SCL) and number of startle responses.

http://jdsp.asu.edu
Educational Value

• Wireless sensor data acquisition
• Accelerometers and context aware applications
• Non-invasive health monitoring
• ECG signal characteristics
• Parameter estimation, and filtering

http://jdsp.asu.edu
Localization

• Audio-based localization
 – Pairwise distance estimation
 – Localization by triangulation

• Communications between devices
 – Wi-Fi on tablets/phones
 – Server-client model
 – Server-server model
Distance Estimation

http://jdsp.asu.edu
Educational Value

• Demonstration of localization

• Effect of different transmit signal waveforms and frequencies

• Effect of different environmental conditions

• Android-based system with a simple GUI

http://jdsp.asu.edu
THANK YOU

Questions?

http://jdsp.asu.edu